# Workaround to install the lib without "setup.py" import sys from git import Repo Repo.clone_from("https://github.com/dimitreOliveira/hub.git", "./hub") sys.path.append("/hub") import gradio as gr import tensorflow as tf from hub.tensorflow_hub.hf_utils import pull_from_hub import requests # Download human-readable labels for ImageNet. response = requests.get("https://storage.googleapis.com/download.tensorflow.org/data/ImageNetLabels.txt") labels = [x for x in response.text.split("\n") if x != ""] model = pull_from_hub(repo_id="Dimitre/mobilenet_v3_small") def preprocess(image): image = image.reshape((-1, 224, 224, 3)) # (batch_size, height, width, num_channels) return image / 255. def postprocess(prediction): return {labels[i]: float(prediction[i]) for i in range(len(labels))} def predict_fn(image): image = preprocess(image) logits = model(image) probs = tf.nn.softmax(logits, axis=1)[0].numpy() scores = postprocess(probs) return scores description = "Using the power of CLIP and a simple small CNN, find images from movies based on what you draw!" iface = gr.Interface(fn=predict_fn, title="ImageNet classification with mobilenet", description="Predict from wich ImageNet class your images belongs", inputs=gr.Image(shape=(224, 224)), outputs=gr.Label(num_top_classes=5), examples=["apples.jpeg", "banana.jpeg", "car.jpeg"]) iface.launch()