File size: 7,828 Bytes
f239efc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
"""
Modified from https://github.com/m-bain/frozen-in-time/blob/22a91d78405ec6032fdf521ae1ff5573358e632f/base/base_dataset.py
"""
import random
import io
import os
import av
import cv2
import decord
import imageio
from decord import VideoReader

# from dataloader import KVReader
import torch
import numpy as np
import math
# import tensorflow as tf
decord.bridge.set_bridge("torch")

import logging
logger = logging.getLogger(__name__)

def pts_to_secs(pts: int, time_base: float, start_pts: int) -> float:
    """
    Converts a present time with the given time base and start_pts offset to seconds.

    Returns:
        time_in_seconds (float): The corresponding time in seconds.

    https://github.com/facebookresearch/pytorchvideo/blob/main/pytorchvideo/data/utils.py#L54-L64
    """
    if pts == math.inf:
        return math.inf

    return int(pts - start_pts) * time_base


def get_pyav_video_duration(video_reader):
    video_stream = video_reader.streams.video[0]
    video_duration = pts_to_secs(
        video_stream.duration,
        video_stream.time_base,
        video_stream.start_time
    )
    return float(video_duration)


def get_frame_indices_by_fps():
    pass


def get_frame_indices(num_frames, vlen, sample='rand', fix_start=None, input_fps=1, max_num_frames=-1):
    if sample in ["rand", "middle"]: # uniform sampling
        acc_samples = min(num_frames, vlen)
        # split the video into `acc_samples` intervals, and sample from each interval.
        intervals = np.linspace(start=0, stop=vlen, num=acc_samples + 1).astype(int)
        ranges = []
        for idx, interv in enumerate(intervals[:-1]):
            ranges.append((interv, intervals[idx + 1] - 1))
        if sample == 'rand':
            try:
                frame_indices = [random.choice(range(x[0], x[1])) for x in ranges]
            except:
                frame_indices = np.random.permutation(vlen)[:acc_samples]
                frame_indices.sort()
                frame_indices = list(frame_indices)
        elif fix_start is not None:
            frame_indices = [x[0] + fix_start for x in ranges]
        elif sample == 'middle':
            frame_indices = [(x[0] + x[1]) // 2 for x in ranges]
        else:
            raise NotImplementedError

        if len(frame_indices) < num_frames:  # padded with last frame
            padded_frame_indices = [frame_indices[-1]] * num_frames
            padded_frame_indices[:len(frame_indices)] = frame_indices
            frame_indices = padded_frame_indices
    elif "fps" in sample:  # fps0.5, sequentially sample frames at 0.5 fps
        output_fps = float(sample[3:])
        duration = float(vlen) / input_fps
        delta = 1 / output_fps  # gap between frames, this is also the clip length each frame represents
        frame_seconds = np.arange(0 + delta / 2, duration + delta / 2, delta)
        frame_indices = np.around(frame_seconds * input_fps).astype(int)
        frame_indices = [e for e in frame_indices if e < vlen]
        if max_num_frames > 0 and len(frame_indices) > max_num_frames:
            frame_indices = frame_indices[:max_num_frames]
            # frame_indices = np.linspace(0 + delta / 2, duration + delta / 2, endpoint=False, num=max_num_frames)
    else:
        raise ValueError
    return frame_indices


def read_frames_av(
        video_path, num_frames, sample='rand', fix_start=None, 
        max_num_frames=-1, client=None, clip=None,
    ):
    reader = av.open(video_path)
    frames = [torch.from_numpy(f.to_rgb().to_ndarray()) for f in reader.decode(video=0)]
    vlen = len(frames)
    duration = get_pyav_video_duration(reader)
    fps = vlen / float(duration)
    frame_indices = get_frame_indices(
        num_frames, vlen, sample=sample, fix_start=fix_start,
        input_fps=fps, max_num_frames=max_num_frames
    )
    frames = torch.stack([frames[idx] for idx in frame_indices])  # (T, H, W, C), torch.uint8
    frames = frames.permute(0, 3, 1, 2)  # (T, C, H, W), torch.uint8
    return frames, frame_indices, fps


def read_frames_gif(
        video_path, num_frames, sample='rand', fix_start=None, 
        max_num_frames=-1, client=None, clip=None,
    ):
    if video_path.startswith('s3') or video_path.startswith('p2'):
        video_bytes = client.get(video_path)
        gif = imageio.get_reader(io.BytesIO(video_bytes))
    else:
        gif = imageio.get_reader(video_path)
    vlen = len(gif)
    frame_indices = get_frame_indices(
        num_frames, vlen, sample=sample, fix_start=fix_start,
        max_num_frames=max_num_frames
    )
    frames = []
    for index, frame in enumerate(gif):
        # for index in frame_idxs:
        if index in frame_indices:
            frame = cv2.cvtColor(frame, cv2.COLOR_RGBA2RGB)
            frame = torch.from_numpy(frame).byte()
            # # (H x W x C) to (C x H x W)
            frame = frame.permute(2, 0, 1)
            frames.append(frame)
    frames = torch.stack(frames)  # .float() / 255
    
    return frames, frame_indices, 25. # for tgif


def read_frames_hdfs(ind_file, vid, num_frames, sample='rand',fix_start=None, 
        max_num_frames=-1, client=None, clip=None):
    _context_features = {'title': tf.io.FixedLenFeature([], dtype=tf.string)}
    _sequence_features = {'data': tf.io.FixedLenSequenceFeature([], dtype=tf.string)}
    num_parallel_reader = 1
    filename, extension = os.path.splitext(ind_file)
    reader = KVReader(filename, num_parallel_reader)
    key = vid
    values = reader.read_many([key])    
    item = values[0]
    contexts, sequences = tf.io.parse_single_sequence_example(
            serialized=item,
            context_features=_context_features,
            sequence_features=_sequence_features)
    
    # text = contexts['title'].numpy().decode("utf-8")
    rawframes = sequences['data']
    vlen = len(rawframes)
    sample="rand"

    frame_indices = get_frame_indices(num_frames, vlen, sample=sample,
                                      fix_start=fix_start,
                                      max_num_frames=max_num_frames)
    def read_image(raw_data):
        return tf.image.decode_jpeg(raw_data, channels=3, dct_method='INTEGER_ACCURATE').numpy()
    
    frames = []
    for index, frame in enumerate(rawframes):
        if index in frame_indices:
            frame = read_image(frame)
            frame = torch.as_tensor(frame)
            frames.append(frame)
        
    frames = torch.stack(frames)
    # print("in hdfs========>",frames[0])
    frames = frames.permute(0, 3, 1, 2) 
    return frames, frame_indices, 25 # don't know the fps for index 


def read_frames_decord(
        video_path, num_frames, sample='rand', fix_start=None, 
        max_num_frames=-1, client=None, clip=None
    ):
    if video_path.startswith('s3') or video_path.startswith('p2'):
        video_bytes = client.get(video_path)
        video_reader = VideoReader(io.BytesIO(video_bytes), num_threads=1)
    else:
        video_reader = VideoReader(video_path, num_threads=1)
    vlen = len(video_reader)
    fps = video_reader.get_avg_fps()
    duration = vlen / float(fps)

    if clip:
        start, end = clip
        duration = end - start
        vlen = int(duration * fps)
        start_index = int(start * fps)

    frame_indices = get_frame_indices(
        num_frames, vlen, sample=sample, fix_start=fix_start,
        input_fps=fps, max_num_frames=max_num_frames
    )
    if clip:
        frame_indices = [f + start_index for f in frame_indices]

    frames = video_reader.get_batch(frame_indices)  # (T, H, W, C), torch.uint8
    frames = frames.permute(0, 3, 1, 2)  # (T, C, H, W), torch.uint8
    return frames, frame_indices, float(fps)


VIDEO_READER_FUNCS = {
    'av': read_frames_av,
    'decord': read_frames_decord,
    'gif': read_frames_gif,
    'hdfs': read_frames_hdfs,
}