File size: 6,372 Bytes
d4ab1b2 24b222f 43a8a9b d4ab1b2 e3761d9 aa9bed2 b5259ef dc8cbb9 e3761d9 d4ab1b2 2294187 d4ab1b2 aa9bed2 d4ab1b2 b6d1bbe d4ab1b2 2d29a54 d4ab1b2 5d7418d d4ab1b2 897451d d4ab1b2 b6d1bbe d4ab1b2 897451d d4ab1b2 7e1dc75 d4ab1b2 7e1dc75 d4ab1b2 ba25ba3 d4ab1b2 897451d 7e1dc75 897451d d4ab1b2 43a8a9b d4ab1b2 897451d d4ab1b2 c9d46cc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 |
#!/usr/bin/env python
from __future__ import annotations
import os
import random
import time
import gradio as gr
import numpy as np
import PIL.Image
from diffusers import DiffusionPipeline
from optimum.intel.openvino.modeling_diffusion import OVModelVaeDecoder, OVBaseModel, OVStableDiffusionPipeline
import os
from tqdm import tqdm
import gradio_user_history as gr_user_history
from concurrent.futures import ThreadPoolExecutor
import uuid
DESCRIPTION = '''# Latent Consistency Model OpenVINO CPU
Based on [Latency Consistency Model OpenVINO CPU](https://huggingface.co/spaces/deinferno/Latent_Consistency_Model_OpenVino_CPU) HF space
Converted from [SoteMix](https://huggingface.co/Disty0/SoteMix) to [LCM_SoteMix](https://huggingface.co/Disty0/LCM_SoteMix) and then to OpenVINO
This model is for Anime art style.
Faster but lower quality version with TAESD VAE: [LCM_SoteMix_OpenVINO_CPU_Space_TAESD](https://huggingface.co/spaces/Disty0/LCM_SoteMix_OpenVINO_CPU_Space_TAESD)
[LCM Project page](https://latent-consistency-models.github.io)
<p>Running on a Dual Core CPU with OpenVINO Acceleration</p>
'''
MAX_SEED = np.iinfo(np.int32).max
CACHE_EXAMPLES = os.getenv("CACHE_EXAMPLES") == "1"
model_id = "Disty0/LCM_SoteMix"
batch_size = -1
width = int(os.getenv("IMAGE_WIDTH", "512"))
height = int(os.getenv("IMAGE_HEIGHT", "512"))
num_images = int(os.getenv("NUM_IMAGES", "1"))
guidance_scale = float(os.getenv("GUIDANCE_SCALE", "1.0"))
pipe = OVStableDiffusionPipeline.from_pretrained(model_id, compile = False, ov_config = {"CACHE_DIR":""})
pipe.reshape(batch_size=batch_size, height=height, width=width, num_images_per_prompt=num_images)
pipe.compile()
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
def save_image(img, profile: gr.OAuthProfile | None, metadata: dict):
unique_name = str(uuid.uuid4()) + '.png'
img.save(unique_name)
gr_user_history.save_image(label=metadata["prompt"], image=img, profile=profile, metadata=metadata)
return unique_name
def save_images(image_array, profile: gr.OAuthProfile | None, metadata: dict):
paths = []
with ThreadPoolExecutor() as executor:
paths = list(executor.map(save_image, image_array, [profile]*len(image_array), [metadata]*len(image_array)))
return paths
def generate(
prompt: str,
negative_prompt: str,
seed: int = 0,
num_inference_steps: int = 4,
randomize_seed: bool = False,
progress = gr.Progress(track_tqdm=True),
profile: gr.OAuthProfile | None = None,
) -> PIL.Image.Image:
global batch_size
global width
global height
global num_images
global guidance_scale
seed = randomize_seed_fn(seed, randomize_seed)
np.random.seed(seed)
start_time = time.time()
result = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
width=width,
height=height,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
num_images_per_prompt=num_images,
output_type="pil",
).images
paths = save_images(result, profile, metadata={"prompt": prompt, "seed": seed, "width": width, "height": height, "guidance_scale": guidance_scale, "num_inference_steps": num_inference_steps})
print(time.time() - start_time)
return paths, seed
examples = [
"masterpiece, best quality, highres, 1girl, solo,",
"masterpiece, best quality, highres, 1girl, solo, pov, scenery, wind, petals, rim lighting, shrine, lens flare, light scatter, depth of field, lens refraction,",
"masterpiece, best quality, highres, 1girl, solo, scenery, wind, petals, rim lighting, shrine, lens flare, light scatter, depth of field, lens refraction, dark red hair, long hair, blue eyes, straight hair, cat ears, medium breasts, mature female, white sweater,",
"masterpiece, best quality, highres, 1girl, solo, supernova, abstract, abstract background, bloom, swirling lights, light particles, fire, galaxy, floating, romanticized, blush, looking at viewer, dark red hair, long hair, blue eyes, straight hair, cat ears, medium breasts, mature female, white sweater,",
]
with gr.Blocks(css="style.css") as demo:
gr.Markdown(DESCRIPTION)
gr.DuplicateButton(
value="Duplicate Space for private use",
elem_id="duplicate-button",
visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
)
with gr.Group():
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
value="masterpiece, best quality, highres, 1girl, solo,",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Gallery(
label="Generated images", show_label=False, elem_id="gallery"
)
with gr.Accordion("Advanced options", open=False):
with gr.Row():
negative_prompt = gr.Text(
label="Negative Prompt",
max_lines=1,
value="worst quality, low quality, lowres, monochrome, realistic,",
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
randomize=True
)
randomize_seed = gr.Checkbox(label="Randomize seed across runs", value=True)
with gr.Row():
num_inference_steps = gr.Slider(
label="Number of inference steps for base",
minimum=1,
maximum=8,
step=1,
value=4,
)
with gr.Accordion("Past generations", open=False):
gr_user_history.render()
gr.Examples(
examples=examples,
inputs=prompt,
outputs=result,
fn=generate,
cache_examples=CACHE_EXAMPLES,
)
gr.on(
triggers=[
prompt.submit,
run_button.click,
],
fn=generate,
inputs=[
prompt,
negative_prompt,
seed,
num_inference_steps,
randomize_seed
],
outputs=[result, seed],
api_name="run",
)
if __name__ == "__main__":
demo.queue(api_open=False)
# demo.queue(max_size=20).launch()
demo.launch()
|