Spaces:
Sleeping
Sleeping
viboognesh-doaz
commited on
Commit
·
5e32aa7
1
Parent(s):
5a02e62
fixed aws errors
Browse files- app.py +5 -268
- awsfunctions.py +3 -3
- retrieve_and_display.py +9 -8
app.py
CHANGED
|
@@ -1,261 +1,4 @@
|
|
| 1 |
-
# import streamlit as st
|
| 2 |
-
# import os
|
| 3 |
-
# from PyPDF2 import PdfReader
|
| 4 |
-
# import pymupdf
|
| 5 |
-
# import numpy as np
|
| 6 |
-
# import cv2
|
| 7 |
-
# import shutil
|
| 8 |
-
# import imageio
|
| 9 |
-
# from PIL import Image
|
| 10 |
-
# import imagehash
|
| 11 |
-
# import matplotlib.pyplot as plt
|
| 12 |
-
# from llama_index.core.indices import MultiModalVectorStoreIndex
|
| 13 |
-
# from llama_index.vector_stores.qdrant import QdrantVectorStore
|
| 14 |
-
# from llama_index.core import SimpleDirectoryReader, StorageContext
|
| 15 |
-
# import qdrant_client
|
| 16 |
-
# from llama_index.core import PromptTemplate
|
| 17 |
-
# from llama_index.core.query_engine import SimpleMultiModalQueryEngine
|
| 18 |
-
# from llama_index.llms.openai import OpenAI
|
| 19 |
-
# from llama_index.core import load_index_from_storage, get_response_synthesizer
|
| 20 |
-
# import tempfile
|
| 21 |
-
# from qdrant_client import QdrantClient, models
|
| 22 |
-
# import getpass
|
| 23 |
-
|
| 24 |
-
# curr_user = getpass.getuser()
|
| 25 |
-
# # from langchain.vectorstores import Chroma
|
| 26 |
-
# # To connect to the same event-loop,
|
| 27 |
-
# # allows async events to run on notebook
|
| 28 |
-
|
| 29 |
-
# # import nest_asyncio
|
| 30 |
-
|
| 31 |
-
# # nest_asyncio.apply()
|
| 32 |
-
|
| 33 |
-
# from dotenv import load_dotenv
|
| 34 |
-
# load_dotenv()
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
# def extract_text_from_pdf(pdf_path):
|
| 38 |
-
# reader = PdfReader(pdf_path)
|
| 39 |
-
# full_text = ''
|
| 40 |
-
# for page in reader.pages:
|
| 41 |
-
# text = page.extract_text()
|
| 42 |
-
# full_text += text
|
| 43 |
-
# return full_text
|
| 44 |
-
|
| 45 |
-
# def extract_images_from_pdf(pdf_path, img_save_path):
|
| 46 |
-
# doc = pymupdf.open(pdf_path)
|
| 47 |
-
# for page in doc:
|
| 48 |
-
# img_number = 0
|
| 49 |
-
# for block in page.get_text("dict")["blocks"]:
|
| 50 |
-
# if block['type'] == 1:
|
| 51 |
-
# name = os.path.join(img_save_path, f"img{page.number}-{img_number}.{block['ext']}")
|
| 52 |
-
# out = open(name, "wb")
|
| 53 |
-
# out.write(block["image"])
|
| 54 |
-
# out.close()
|
| 55 |
-
# img_number += 1
|
| 56 |
-
|
| 57 |
-
# def is_empty(img_path):
|
| 58 |
-
# image = cv2.imread(img_path, 0)
|
| 59 |
-
# std_dev = np.std(image)
|
| 60 |
-
# return std_dev < 1
|
| 61 |
-
|
| 62 |
-
# def move_images(source_folder, dest_folder):
|
| 63 |
-
# image_files = [f for f in os.listdir(source_folder)
|
| 64 |
-
# if f.lower().endswith(('.jpg', '.jpeg', '.png', '.gif'))]
|
| 65 |
-
# os.makedirs(dest_folder, exist_ok=True)
|
| 66 |
-
# moved_count = 0
|
| 67 |
-
# for file in image_files:
|
| 68 |
-
# src_path = os.path.join(source_folder, file)
|
| 69 |
-
# if not is_empty(src_path):
|
| 70 |
-
# shutil.move(src_path, os.path.join(dest_folder, file))
|
| 71 |
-
# moved_count += 1
|
| 72 |
-
# return moved_count
|
| 73 |
-
|
| 74 |
-
# def remove_low_size_images(data_path):
|
| 75 |
-
# images_list = os.listdir(data_path)
|
| 76 |
-
# low_size_photo_list = []
|
| 77 |
-
# for one_image in images_list:
|
| 78 |
-
# image_path = os.path.join(data_path, one_image)
|
| 79 |
-
# try:
|
| 80 |
-
# pic = imageio.imread(image_path)
|
| 81 |
-
# size = pic.size
|
| 82 |
-
# if size < 100:
|
| 83 |
-
# low_size_photo_list.append(one_image)
|
| 84 |
-
# except:
|
| 85 |
-
# pass
|
| 86 |
-
# for one_image in low_size_photo_list[1:]:
|
| 87 |
-
# os.remove(os.path.join(data_path, one_image))
|
| 88 |
-
|
| 89 |
-
# def calc_diff(img1 , img2) :
|
| 90 |
-
# i1 = Image.open(img1)
|
| 91 |
-
# i2 = Image.open(img2)
|
| 92 |
-
# h1 = imagehash.phash(i1)
|
| 93 |
-
# h2 = imagehash.phash(i2)
|
| 94 |
-
# return h1 - h2
|
| 95 |
-
|
| 96 |
-
# def remove_duplicate_images(data_path) :
|
| 97 |
-
# image_files = os.listdir(data_path)
|
| 98 |
-
# only_images = []
|
| 99 |
-
# for one_image in image_files :
|
| 100 |
-
# if one_image.endswith('jpeg') or one_image.endswith('png') or one_image.endswith('jpg') :
|
| 101 |
-
# only_images.append(one_image)
|
| 102 |
-
# only_images1 = sorted(only_images)
|
| 103 |
-
# for one_image in only_images1 :
|
| 104 |
-
# for another_image in only_images1 :
|
| 105 |
-
# try :
|
| 106 |
-
# if one_image == another_image :
|
| 107 |
-
# continue
|
| 108 |
-
# else :
|
| 109 |
-
# diff = calc_diff(os.path.join(data_path ,one_image) , os.path.join(data_path ,another_image))
|
| 110 |
-
# if diff ==0 :
|
| 111 |
-
# os.remove(os.path.join(data_path , another_image))
|
| 112 |
-
# except Exception as e:
|
| 113 |
-
# print(e)
|
| 114 |
-
# pass
|
| 115 |
-
# # from langchain_chroma import Chroma
|
| 116 |
-
# # import chromadb
|
| 117 |
-
# def initialize_qdrant(temp_dir , file_name , user):
|
| 118 |
-
# client = qdrant_client.QdrantClient(path=f"qdrant_mm_db_pipeline_{user}_{file_name}")
|
| 119 |
-
# # client = qdrant_client.QdrantClient(url = "http://localhost:2452")
|
| 120 |
-
# # client = qdrant_client.QdrantClient(url="4b0af7be-d5b3-47ac-b215-128ebd6aa495.europe-west3-0.gcp.cloud.qdrant.io:6333", api_key="CO1sNGLmC6R_Q45qSIUxBSX8sxwHud4MCm4as_GTI-vzQqdUs-bXqw",)
|
| 121 |
-
# # client = qdrant_client.AsyncQdrantClient(location = ":memory:")
|
| 122 |
-
|
| 123 |
-
# if "vectordatabase" not in st.session_state or not st.session_state.vectordatabase:
|
| 124 |
-
|
| 125 |
-
# # text_store = client.create_collection(f"text_collection_pipeline_{user}_{file_name}" )
|
| 126 |
-
# # image_store = client.create_collection(f"image_collection_pipeline_{user}_{file_name}" )
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
# text_store = QdrantVectorStore( client = client , collection_name=f"text_collection_pipeline_{user}_{file_name}" )
|
| 130 |
-
# image_store = QdrantVectorStore(client = client , collection_name=f"image_collection_pipeline_{user}_{file_name}")
|
| 131 |
-
# storage_context = StorageContext.from_defaults(vector_store=text_store, image_store=image_store)
|
| 132 |
-
# documents = SimpleDirectoryReader(os.path.join(temp_dir, f"my_own_data_{user}_{file_name}")).load_data()
|
| 133 |
-
# index = MultiModalVectorStoreIndex.from_documents(documents, storage_context=storage_context)
|
| 134 |
-
|
| 135 |
-
# st.session_state.vectordatabase = index
|
| 136 |
-
# else :
|
| 137 |
-
# index = st.session_state.vectordatabase
|
| 138 |
-
# retriever_engine = index.as_retriever(similarity_top_k=1, image_similarity_top_k=1)
|
| 139 |
-
# return retriever_engine
|
| 140 |
-
|
| 141 |
-
# def plot_images(image_paths):
|
| 142 |
-
# images_shown = 0
|
| 143 |
-
# plt.figure(figsize=(16, 9))
|
| 144 |
-
# for img_path in image_paths:
|
| 145 |
-
# if os.path.isfile(img_path):
|
| 146 |
-
# image = Image.open(img_path)
|
| 147 |
-
# plt.subplot(2, 3, images_shown + 1)
|
| 148 |
-
# plt.imshow(image)
|
| 149 |
-
# plt.xticks([])
|
| 150 |
-
# plt.yticks([])
|
| 151 |
-
# images_shown += 1
|
| 152 |
-
# if images_shown >= 6:
|
| 153 |
-
# break
|
| 154 |
-
|
| 155 |
-
# def retrieve_and_query(query, retriever_engine):
|
| 156 |
-
# retrieval_results = retriever_engine.retrieve(query)
|
| 157 |
-
|
| 158 |
-
# qa_tmpl_str = (
|
| 159 |
-
# "Context information is below.\n"
|
| 160 |
-
# "---------------------\n"
|
| 161 |
-
# "{context_str}\n"
|
| 162 |
-
# "---------------------\n"
|
| 163 |
-
# "Given the context information , "
|
| 164 |
-
# "answer the query in detail.\n"
|
| 165 |
-
# "Query: {query_str}\n"
|
| 166 |
-
# "Answer: "
|
| 167 |
-
# )
|
| 168 |
-
# qa_tmpl = PromptTemplate(qa_tmpl_str)
|
| 169 |
-
|
| 170 |
-
# llm = OpenAI(model="gpt-4o", temperature=0)
|
| 171 |
-
# response_synthesizer = get_response_synthesizer(response_mode="refine", text_qa_template=qa_tmpl, llm=llm)
|
| 172 |
-
|
| 173 |
-
# response = response_synthesizer.synthesize(query, nodes=retrieval_results)
|
| 174 |
-
|
| 175 |
-
# retrieved_image_path_list = []
|
| 176 |
-
# for node in retrieval_results:
|
| 177 |
-
# if (node.metadata['file_type'] == 'image/jpeg') or (node.metadata['file_type'] == 'image/png'):
|
| 178 |
-
# if node.score > 0.25:
|
| 179 |
-
# retrieved_image_path_list.append(node.metadata['file_path'])
|
| 180 |
-
|
| 181 |
-
# return response, retrieved_image_path_list
|
| 182 |
-
# #tmpnimvp35m , tmpnimvp35m , tmpydpissmv
|
| 183 |
-
# def process_pdf(pdf_file):
|
| 184 |
-
# temp_dir = tempfile.TemporaryDirectory()
|
| 185 |
-
# unique_folder_name = temp_dir.name.split('/')[-1]
|
| 186 |
-
# temp_pdf_path = os.path.join(temp_dir.name, pdf_file.name)
|
| 187 |
-
# with open(temp_pdf_path, "wb") as f:
|
| 188 |
-
# f.write(pdf_file.getvalue())
|
| 189 |
-
|
| 190 |
-
# data_path = os.path.join(temp_dir.name, f"my_own_data_{unique_folder_name}_{os.path.splitext(pdf_file.name)[0]}")
|
| 191 |
-
# os.makedirs(data_path , exist_ok=True)
|
| 192 |
-
# img_save_path = os.path.join(temp_dir.name, f"extracted_images_{unique_folder_name}_{os.path.splitext(pdf_file.name)[0]}")
|
| 193 |
-
# os.makedirs(img_save_path , exist_ok=True)
|
| 194 |
-
|
| 195 |
-
# extracted_text = extract_text_from_pdf(temp_pdf_path)
|
| 196 |
-
# with open(os.path.join(data_path, "content.txt"), "w") as file:
|
| 197 |
-
# file.write(extracted_text)
|
| 198 |
-
|
| 199 |
-
# extract_images_from_pdf(temp_pdf_path, img_save_path)
|
| 200 |
-
# moved_count = move_images(img_save_path, data_path)
|
| 201 |
-
# remove_low_size_images(data_path)
|
| 202 |
-
# remove_duplicate_images(data_path)
|
| 203 |
-
# retriever_engine = initialize_qdrant(temp_dir.name , os.path.splitext(pdf_file.name)[0] , unique_folder_name)
|
| 204 |
-
|
| 205 |
-
# return temp_dir, retriever_engine
|
| 206 |
-
|
| 207 |
-
# def main():
|
| 208 |
-
# st.title("PDF Vector Database Query Tool")
|
| 209 |
-
# st.markdown("This tool creates a vector database from a PDF and allows you to query it.")
|
| 210 |
-
|
| 211 |
-
# if "retriever_engine" not in st.session_state:
|
| 212 |
-
# st.session_state.retriever_engine = None
|
| 213 |
-
# if "vectordatabase" not in st.session_state:
|
| 214 |
-
# st.session_state.vectordatabase = None
|
| 215 |
-
|
| 216 |
-
# uploaded_file = st.file_uploader("Choose a PDF file", type="pdf")
|
| 217 |
-
# if uploaded_file is None:
|
| 218 |
-
# st.info("Please upload a PDF file.")
|
| 219 |
-
# else:
|
| 220 |
-
# st.info(f"Uploaded PDF: {uploaded_file.name}")
|
| 221 |
-
# if st.button("Process PDF"):
|
| 222 |
-
# with st.spinner("Processing PDF..."):
|
| 223 |
-
# temp_dir, st.session_state.retriever_engine = process_pdf(uploaded_file)
|
| 224 |
-
|
| 225 |
-
# st.success("PDF processed successfully!")
|
| 226 |
-
|
| 227 |
-
# if st.session_state.retriever_engine :
|
| 228 |
-
# query = st.text_input("Enter your question:")
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
# if st.button("Ask Question"):
|
| 232 |
-
# print("running")
|
| 233 |
-
# try:
|
| 234 |
-
|
| 235 |
-
# with st.spinner("Retrieving information..."):
|
| 236 |
-
# response, retrieved_image_path_list = retrieve_and_query(query, st.session_state.retriever_engine)
|
| 237 |
-
# print(retrieved_image_path_list)
|
| 238 |
-
# st.write("Retrieved Context:")
|
| 239 |
-
# for node in response.source_nodes:
|
| 240 |
-
# st.code(node.node.get_text())
|
| 241 |
-
|
| 242 |
-
# st.write("\nRetrieved Images:")
|
| 243 |
-
# plot_images(retrieved_image_path_list)
|
| 244 |
-
# st.pyplot()
|
| 245 |
-
|
| 246 |
-
# st.write("\nFinal Answer:")
|
| 247 |
-
# st.code(response.response)
|
| 248 |
-
|
| 249 |
-
# except Exception as e:
|
| 250 |
-
# st.error(f"An error occurred: {e}")
|
| 251 |
-
|
| 252 |
-
# if __name__ == "__main__":
|
| 253 |
-
# main()
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
import streamlit as st
|
| 258 |
-
from PIL import Image
|
| 259 |
|
| 260 |
from pdf_processing import process_pdf
|
| 261 |
from retrieve_and_display import retrieve_and_query, plot_images
|
|
@@ -281,13 +24,7 @@ def upload_file():
|
|
| 281 |
st.session_state.filename_and_retriever_engine = uploaded_file.name, process_pdf(uploaded_file)
|
| 282 |
st.success("PDF processed successfully!")
|
| 283 |
st.success("Click on Chat in sidebar")
|
| 284 |
-
|
| 285 |
-
def img_display(img_path_list) :
|
| 286 |
-
##################### new image display function ###################################
|
| 287 |
-
for one_img in img_path_list :
|
| 288 |
-
image = Image.open(one_img)
|
| 289 |
-
st.image(image)
|
| 290 |
-
|
| 291 |
|
| 292 |
def ask_question():
|
| 293 |
if st.session_state.filename_and_retriever_engine :
|
|
@@ -295,16 +32,15 @@ def ask_question():
|
|
| 295 |
if user_question := st.chat_input("Ask a question"):
|
| 296 |
with st.spinner("Retrieving information..."):
|
| 297 |
response, retrieved_image_path_list = retrieve_and_query(user_question, st.session_state.filename_and_retriever_engine[1])
|
| 298 |
-
# st.session_state.filename_and_retriever_engine[1].count('image_collection')
|
| 299 |
print(retrieved_image_path_list)
|
| 300 |
st.write("Retrieved Context:")
|
| 301 |
for node in response.source_nodes:
|
| 302 |
st.code(node.node.get_text())
|
| 303 |
|
| 304 |
st.write("\nRetrieved Images:")
|
| 305 |
-
#
|
| 306 |
-
|
| 307 |
-
|
| 308 |
|
| 309 |
st.write("\nFinal Answer:")
|
| 310 |
st.code(response.response)
|
|
@@ -327,3 +63,4 @@ def main():
|
|
| 327 |
if __name__ == "__main__":
|
| 328 |
# login_page()
|
| 329 |
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import streamlit as st
|
|
|
|
| 2 |
|
| 3 |
from pdf_processing import process_pdf
|
| 4 |
from retrieve_and_display import retrieve_and_query, plot_images
|
|
|
|
| 24 |
st.session_state.filename_and_retriever_engine = uploaded_file.name, process_pdf(uploaded_file)
|
| 25 |
st.success("PDF processed successfully!")
|
| 26 |
st.success("Click on Chat in sidebar")
|
| 27 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
def ask_question():
|
| 30 |
if st.session_state.filename_and_retriever_engine :
|
|
|
|
| 32 |
if user_question := st.chat_input("Ask a question"):
|
| 33 |
with st.spinner("Retrieving information..."):
|
| 34 |
response, retrieved_image_path_list = retrieve_and_query(user_question, st.session_state.filename_and_retriever_engine[1])
|
|
|
|
| 35 |
print(retrieved_image_path_list)
|
| 36 |
st.write("Retrieved Context:")
|
| 37 |
for node in response.source_nodes:
|
| 38 |
st.code(node.node.get_text())
|
| 39 |
|
| 40 |
st.write("\nRetrieved Images:")
|
| 41 |
+
# if len(retrieved_image_path_list) > 0:
|
| 42 |
+
plot_images(retrieved_image_path_list)
|
| 43 |
+
# st.pyplot()
|
| 44 |
|
| 45 |
st.write("\nFinal Answer:")
|
| 46 |
st.code(response.response)
|
|
|
|
| 63 |
if __name__ == "__main__":
|
| 64 |
# login_page()
|
| 65 |
main()
|
| 66 |
+
|
awsfunctions.py
CHANGED
|
@@ -14,7 +14,7 @@ def upload_folder_to_s3(local_dir, prefix=''):
|
|
| 14 |
|
| 15 |
# Create the directory in S3 if it doesn't exist
|
| 16 |
try:
|
| 17 |
-
s3_client.put_object(Bucket=s3_bucket, Key=
|
| 18 |
except ClientError as e:
|
| 19 |
if e.response['Error']['Code'] == '404':
|
| 20 |
continue # Directory already exists
|
|
@@ -26,8 +26,8 @@ def upload_folder_to_s3(local_dir, prefix=''):
|
|
| 26 |
relative_path = os.path.relpath(file_path, local_dir)
|
| 27 |
|
| 28 |
try:
|
| 29 |
-
s3_client.upload_file(file_path, s3_bucket,
|
| 30 |
-
print(f"Uploaded: {file_path} -> s3://{s3_bucket}/{prefix
|
| 31 |
except Exception as e:
|
| 32 |
raise e
|
| 33 |
# print(f"Error uploading {file_path}: {e}")
|
|
|
|
| 14 |
|
| 15 |
# Create the directory in S3 if it doesn't exist
|
| 16 |
try:
|
| 17 |
+
s3_client.put_object(Bucket=s3_bucket, Key=os.path.join(prefix, relative_path))
|
| 18 |
except ClientError as e:
|
| 19 |
if e.response['Error']['Code'] == '404':
|
| 20 |
continue # Directory already exists
|
|
|
|
| 26 |
relative_path = os.path.relpath(file_path, local_dir)
|
| 27 |
|
| 28 |
try:
|
| 29 |
+
s3_client.upload_file(file_path, s3_bucket, os.path.join(prefix, relative_path))
|
| 30 |
+
print(f"Uploaded: {file_path} -> s3://{s3_bucket}/{os.path.join(prefix, relative_path)}")
|
| 31 |
except Exception as e:
|
| 32 |
raise e
|
| 33 |
# print(f"Error uploading {file_path}: {e}")
|
retrieve_and_display.py
CHANGED
|
@@ -22,13 +22,14 @@ def plot_images(image_paths):
|
|
| 22 |
for img_path in image_paths:
|
| 23 |
if check_file_exists_in_s3(img_path):
|
| 24 |
image = get_image_from_s3(img_path)
|
| 25 |
-
|
| 26 |
-
plt.
|
| 27 |
-
plt.
|
| 28 |
-
plt.
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
|
|
|
| 32 |
|
| 33 |
def retrieve_and_query(query, retriever_engine):
|
| 34 |
retrieval_results = retriever_engine.retrieve(query)
|
|
@@ -45,7 +46,7 @@ def retrieve_and_query(query, retriever_engine):
|
|
| 45 |
)
|
| 46 |
qa_tmpl = PromptTemplate(qa_tmpl_str)
|
| 47 |
|
| 48 |
-
llm = OpenAI(model="gpt-4o", temperature=0)
|
| 49 |
response_synthesizer = get_response_synthesizer(response_mode="refine", text_qa_template=qa_tmpl, llm=llm)
|
| 50 |
|
| 51 |
response = response_synthesizer.synthesize(query, nodes=retrieval_results)
|
|
|
|
| 22 |
for img_path in image_paths:
|
| 23 |
if check_file_exists_in_s3(img_path):
|
| 24 |
image = get_image_from_s3(img_path)
|
| 25 |
+
st.image(image)
|
| 26 |
+
# plt.subplot(2, 3, images_shown + 1)
|
| 27 |
+
# plt.imshow(image)
|
| 28 |
+
# plt.xticks([])
|
| 29 |
+
# plt.yticks([])
|
| 30 |
+
# images_shown += 1
|
| 31 |
+
# if images_shown >= 6:
|
| 32 |
+
# break
|
| 33 |
|
| 34 |
def retrieve_and_query(query, retriever_engine):
|
| 35 |
retrieval_results = retriever_engine.retrieve(query)
|
|
|
|
| 46 |
)
|
| 47 |
qa_tmpl = PromptTemplate(qa_tmpl_str)
|
| 48 |
|
| 49 |
+
llm = OpenAI(model="gpt-4o-mini", temperature=0)
|
| 50 |
response_synthesizer = get_response_synthesizer(response_mode="refine", text_qa_template=qa_tmpl, llm=llm)
|
| 51 |
|
| 52 |
response = response_synthesizer.synthesize(query, nodes=retrieval_results)
|