Spaces:
Running
on
Zero
Running
on
Zero
File size: 21,516 Bytes
df13f4b a6532e3 df13f4b 752a7e2 df13f4b 752a7e2 df13f4b b2bdc68 df13f4b b2bdc68 df13f4b 6679c1c df13f4b 7ccdbd8 b2bdc68 df13f4b 6679c1c b2bdc68 df13f4b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 |
import sys
sys.path.append('./extern/dust3r')
from dust3r.inference import inference, load_model
from dust3r.utils.image import load_images
from dust3r.image_pairs import make_pairs
from dust3r.cloud_opt import global_aligner, GlobalAlignerMode
from dust3r.utils.device import to_numpy
import trimesh
import torch
import numpy as np
import torchvision
import os
import copy
import cv2
from PIL import Image
import pytorch3d
from pytorch3d.structures import Pointclouds
from torchvision.utils import save_image
import torch.nn.functional as F
import torchvision.transforms as transforms
from PIL import Image
from utils.pvd_utils import *
from omegaconf import OmegaConf
from pytorch_lightning import seed_everything
from utils.diffusion_utils import instantiate_from_config,load_model_checkpoint,image_guided_synthesis
from pathlib import Path
from torchvision.utils import save_image
class ViewCrafter:
def __init__(self, opts, gradio = False):
self.opts = opts
self.device = opts.device
self.setup_dust3r()
# self.setup_diffusion()
# initialize ref images, pcd
if not gradio:
self.images, self.img_ori = self.load_initial_images(image_dir=self.opts.image_dir)
self.run_dust3r(input_images=self.images)
def run_dust3r(self, input_images,clean_pc = False):
pairs = make_pairs(input_images, scene_graph='complete', prefilter=None, symmetrize=True)
output = inference(pairs, self.dust3r, self.device, batch_size=self.opts.batch_size)
mode = GlobalAlignerMode.PointCloudOptimizer #if len(self.images) > 2 else GlobalAlignerMode.PairViewer
scene = global_aligner(output, device=self.device, mode=mode)
if mode == GlobalAlignerMode.PointCloudOptimizer:
loss = scene.compute_global_alignment(init='mst', niter=self.opts.niter, schedule=self.opts.schedule, lr=self.opts.lr)
if clean_pc:
self.scene = scene.clean_pointcloud()
else:
self.scene = scene
def render_pcd(self,pts3d,imgs,masks,views,renderer,device):
imgs = to_numpy(imgs)
pts3d = to_numpy(pts3d)
if masks == None:
pts = torch.from_numpy(np.concatenate([p for p in pts3d])).view(-1, 3).to(device)
col = torch.from_numpy(np.concatenate([p for p in imgs])).view(-1, 3).to(device)
else:
# masks = to_numpy(masks)
pts = torch.from_numpy(np.concatenate([p[m] for p, m in zip(pts3d, masks)])).to(device)
col = torch.from_numpy(np.concatenate([p[m] for p, m in zip(imgs, masks)])).to(device)
color_mask = torch.ones(col.shape).to(device)
# point_cloud_mask = Pointclouds(points=[pts],features=[color_mask]).extend(views)
point_cloud = Pointclouds(points=[pts], features=[col]).extend(views)
images = renderer(point_cloud)
# view_masks = renderer(point_cloud_mask)
return images, None
def run_render(self, pcd, imgs,masks, H, W, camera_traj,num_views,use_cpu=False):
if use_cpu:
device = torch.device("cpu")
else:
device = self.device
render_setup = setup_renderer(camera_traj, image_size=(H,W))
renderer = render_setup['renderer']
render_results, viewmask = self.render_pcd(pcd, imgs, masks, num_views,renderer,device)
return render_results, viewmask
def run_diffusion(self, renderings):
prompts = [self.opts.prompt]
videos = (renderings * 2. - 1.).permute(3,0,1,2).unsqueeze(0).to(self.device)
condition_index = [0]
with torch.no_grad(), torch.cuda.amp.autocast():
# [1,1,c,t,h,w]
batch_samples = image_guided_synthesis(self.diffusion, prompts, videos, self.noise_shape, self.opts.n_samples, self.opts.ddim_steps, self.opts.ddim_eta, \
self.opts.unconditional_guidance_scale, self.opts.cfg_img, self.opts.frame_stride, self.opts.text_input, self.opts.multiple_cond_cfg, self.opts.timestep_spacing, self.opts.guidance_rescale, condition_index)
# save_results_seperate(batch_samples[0], self.opts.save_dir, fps=8)
# torch.Size([1, 3, 25, 576, 1024]) [-1,1]
return torch.clamp(batch_samples[0][0].permute(1,2,3,0), -1., 1.)
def nvs_single_view(self, gradio=False):
# 最后一个view为 0 pose
c2ws = self.scene.get_im_poses().detach()[1:]
principal_points = self.scene.get_principal_points().detach()[1:] #cx cy
focals = self.scene.get_focals().detach()[1:]
shape = self.images[0]['true_shape']
H, W = int(shape[0][0]), int(shape[0][1])
pcd = [i.detach() for i in self.scene.get_pts3d(clip_thred=self.opts.dpt_trd)] # a list of points of size whc
depth = [i.detach() for i in self.scene.get_depthmaps()]
depth_avg = depth[-1][H//2,W//2] #以图像中心处的depth(z)为球心旋转
radius = depth_avg*self.opts.center_scale #缩放调整
## change coordinate
c2ws,pcd = world_point_to_obj(poses=c2ws, points=torch.stack(pcd), k=-1, r=radius, elevation=self.opts.elevation, device=self.device)
imgs = np.array(self.scene.imgs)
masks = None
if self.opts.mode == 'single_view_nbv':
## 输入candidate->渲染mask->最大mask对应的pose作为nbv
## nbv模式下self.opts.d_theta[0], self.opts.d_phi[0]代表search space中的网格theta, phi之间的间距; self.opts.d_phi[0]的符号代表方向,分为左右两个方向
## FIXME hard coded candidate view数量, 以left为例,第一次迭代从[左,左上]中选取, 从第二次开始可以从[左,左上,左下]中选取
num_candidates = 2
candidate_poses,thetas,phis = generate_candidate_poses(c2ws, H, W, focals, principal_points, self.opts.d_theta[0], self.opts.d_phi[0],num_candidates, self.device)
_, viewmask = self.run_render([pcd[-1]], [imgs[-1]],masks, H, W, candidate_poses,num_candidates,use_cpu=False)
nbv_id = torch.argmin(viewmask.sum(dim=[1,2,3])).item()
save_image( viewmask.permute(0,3,1,2), os.path.join(self.opts.save_dir,f"candidate_mask0_nbv{nbv_id}.png"), normalize=True, value_range=(0, 1))
theta_nbv = thetas[nbv_id]
phi_nbv = phis[nbv_id]
# generate camera trajectory from T_curr to T_nbv
camera_traj,num_views = generate_traj_specified(c2ws, H, W, focals, principal_points, theta_nbv, phi_nbv, self.opts.d_r[0],self.opts.video_length, self.device)
# 重置elevation
self.opts.elevation -= theta_nbv
elif self.opts.mode == 'single_view_target':
camera_traj,num_views = generate_traj_specified(c2ws, H, W, focals, principal_points, self.opts.d_theta[0], self.opts.d_phi[0], self.opts.d_r[0],self.opts.video_length, self.device)
elif self.opts.mode == 'single_view_txt':
if not gradio:
with open(self.opts.traj_txt, 'r') as file:
lines = file.readlines()
phi = [float(i) for i in lines[0].split()]
theta = [float(i) for i in lines[1].split()]
r = [float(i) for i in lines[2].split()]
else:
phi, theta, r = self.gradio_traj
# device = torch.device("cpu")
device = self.device
camera_traj,num_views = generate_traj_txt(c2ws, H, W, focals, principal_points, phi, theta, r,self.opts.video_length, device,viz_traj=True, save_dir = self.opts.save_dir)
# camera_traj,num_views = generate_traj_txt(c2ws, H, W, focals, principal_points, phi, theta, r,self.opts.video_length, self.device,viz_traj=True, save_dir = self.opts.save_dir)
else:
raise KeyError(f"Invalid Mode: {self.opts.mode}")
render_results, viewmask = self.run_render([pcd[-1]], [imgs[-1]],masks, H, W, camera_traj,num_views,use_cpu=False)
render_results = render_results.to(self.device)
render_results = F.interpolate(render_results.permute(0,3,1,2), size=(576, 1024), mode='bilinear', align_corners=False).permute(0,2,3,1)
render_results[0] = self.img_ori
if self.opts.mode == 'single_view_txt':
if phi[-1]==0. and theta[-1]==0. and r[-1]==0.:
render_results[-1] = self.img_ori
save_video(render_results, os.path.join(self.opts.save_dir, 'render0.mp4'))
save_pointcloud_with_normals([imgs[-1]], [pcd[-1]], msk=None, save_path=os.path.join(self.opts.save_dir,'pcd0.ply') , mask_pc=False, reduce_pc=False)
diffusion_results = self.run_diffusion(render_results)
save_video((diffusion_results + 1.0) / 2.0, os.path.join(self.opts.save_dir, 'diffusion0.mp4'))
return diffusion_results
def nvs_sparse_view(self,iter):
c2ws = self.scene.get_im_poses().detach()
principal_points = self.scene.get_principal_points().detach()
focals = self.scene.get_focals().detach()
shape = self.images[0]['true_shape']
H, W = int(shape[0][0]), int(shape[0][1])
pcd = [i.detach() for i in self.scene.get_pts3d(clip_thred=self.opts.dpt_trd)] # a list of points of size whc
depth = [i.detach() for i in self.scene.get_depthmaps()]
depth_avg = depth[0][H//2,W//2] #以ref图像中心处的depth(z)为球心旋转
radius = depth_avg*self.opts.center_scale #缩放调整
## masks for cleaner point cloud
self.scene.min_conf_thr = float(self.scene.conf_trf(torch.tensor(self.opts.min_conf_thr)))
masks = self.scene.get_masks()
depth = self.scene.get_depthmaps()
bgs_mask = [dpt > self.opts.bg_trd*(torch.max(dpt[40:-40,:])+torch.min(dpt[40:-40,:])) for dpt in depth]
masks_new = [m+mb for m, mb in zip(masks,bgs_mask)]
masks = to_numpy(masks_new)
## render, 从c2ws[0]即ref image对应的相机开始
imgs = np.array(self.scene.imgs)
if self.opts.mode == 'single_view_ref_iterative':
c2ws,pcd = world_point_to_obj(poses=c2ws, points=torch.stack(pcd), k=0, r=radius, elevation=self.opts.elevation, device=self.device)
camera_traj,num_views = generate_traj_specified(c2ws[0:1], H, W, focals[0:1], principal_points[0:1], self.opts.d_theta[iter], self.opts.d_phi[iter], self.opts.d_r[iter],self.opts.video_length, self.device)
render_results, viewmask = self.run_render(pcd, imgs,masks, H, W, camera_traj,num_views)
render_results = F.interpolate(render_results.permute(0,3,1,2), size=(576, 1024), mode='bilinear', align_corners=False).permute(0,2,3,1)
render_results[0] = self.img_ori
elif self.opts.mode == 'single_view_1drc_iterative':
self.opts.elevation -= self.opts.d_theta[iter-1]
c2ws,pcd = world_point_to_obj(poses=c2ws, points=torch.stack(pcd), k=-1, r=radius, elevation=self.opts.elevation, device=self.device)
camera_traj,num_views = generate_traj_specified(c2ws[-1:], H, W, focals[-1:], principal_points[-1:], self.opts.d_theta[iter], self.opts.d_phi[iter], self.opts.d_r[iter],self.opts.video_length, self.device)
render_results, viewmask = self.run_render(pcd, imgs,masks, H, W, camera_traj,num_views)
render_results = F.interpolate(render_results.permute(0,3,1,2), size=(576, 1024), mode='bilinear', align_corners=False).permute(0,2,3,1)
render_results[0] = (self.images[-1]['img_ori'].squeeze(0).permute(1,2,0)+1.)/2.
elif self.opts.mode == 'single_view_nbv':
c2ws,pcd = world_point_to_obj(poses=c2ws, points=torch.stack(pcd), k=-1, r=radius, elevation=self.opts.elevation, device=self.device)
## 输入candidate->渲染mask->最大mask对应的pose作为nbv
## nbv模式下self.opts.d_theta[0], self.opts.d_phi[0]代表search space中的网格theta, phi之间的间距; self.opts.d_phi[0]的符号代表方向,分为左右两个方向
## FIXME hard coded candidate view数量, 以left为例,第一次迭代从[左,左上]中选取, 从第二次开始可以从[左,左上,左下]中选取
num_candidates = 3
candidate_poses,thetas,phis = generate_candidate_poses(c2ws[-1:], H, W, focals[-1:], principal_points[-1:], self.opts.d_theta[0], self.opts.d_phi[0], num_candidates, self.device)
_, viewmask = self.run_render(pcd, imgs,masks, H, W, candidate_poses,num_candidates)
nbv_id = torch.argmin(viewmask.sum(dim=[1,2,3])).item()
save_image(viewmask.permute(0,3,1,2), os.path.join(self.opts.save_dir,f"candidate_mask{iter}_nbv{nbv_id}.png"), normalize=True, value_range=(0, 1))
theta_nbv = thetas[nbv_id]
phi_nbv = phis[nbv_id]
# generate camera trajectory from T_curr to T_nbv
camera_traj,num_views = generate_traj_specified(c2ws[-1:], H, W, focals[-1:], principal_points[-1:], theta_nbv, phi_nbv, self.opts.d_r[0],self.opts.video_length, self.device)
# 重置elevation
self.opts.elevation -= theta_nbv
render_results, viewmask = self.run_render(pcd, imgs,masks, H, W, camera_traj,num_views)
render_results = F.interpolate(render_results.permute(0,3,1,2), size=(576, 1024), mode='bilinear', align_corners=False).permute(0,2,3,1)
render_results[0] = (self.images[-1]['img_ori'].squeeze(0).permute(1,2,0)+1.)/2.
else:
raise KeyError(f"Invalid Mode: {self.opts.mode}")
save_video(render_results, os.path.join(self.opts.save_dir, f'render{iter}.mp4'))
save_pointcloud_with_normals(imgs, pcd, msk=masks, save_path=os.path.join(self.opts.save_dir, f'pcd{iter}.ply') , mask_pc=True, reduce_pc=False)
diffusion_results = self.run_diffusion(render_results)
save_video((diffusion_results + 1.0) / 2.0, os.path.join(self.opts.save_dir, f'diffusion{iter}.mp4'))
# torch.Size([25, 576, 1024, 3])
return diffusion_results
def nvs_single_view_ref_iterative(self):
all_results = []
sample_rate = 6
idx = 1 #初始包含1张ref image
for itr in range(0, len(self.opts.d_phi)):
if itr == 0:
self.images = [self.images[0]] #去掉后一份copy
diffusion_results_itr = self.nvs_single_view()
# diffusion_results_itr = torch.randn([25, 576, 1024, 3]).to(self.device)
diffusion_results_itr = diffusion_results_itr.permute(0,3,1,2)
all_results.append(diffusion_results_itr)
else:
for i in range(0+sample_rate, diffusion_results_itr.shape[0], sample_rate):
self.images.append(get_input_dict(diffusion_results_itr[i:i+1,...],idx,dtype = torch.float32))
idx += 1
self.run_dust3r(input_images=self.images, clean_pc=True)
diffusion_results_itr = self.nvs_sparse_view(itr)
# diffusion_results_itr = torch.randn([25, 576, 1024, 3]).to(self.device)
diffusion_results_itr = diffusion_results_itr.permute(0,3,1,2)
all_results.append(diffusion_results_itr)
return all_results
def nvs_single_view_1drc_iterative(self):
all_results = []
sample_rate = 6
idx = 1 #初始包含1张ref image
for itr in range(0, len(self.opts.d_phi)):
if itr == 0:
self.images = [self.images[0]] #去掉后一份copy
diffusion_results_itr = self.nvs_single_view()
# diffusion_results_itr = torch.randn([25, 576, 1024, 3]).to(self.device)
diffusion_results_itr = diffusion_results_itr.permute(0,3,1,2)
all_results.append(diffusion_results_itr)
else:
for i in range(0+sample_rate, diffusion_results_itr.shape[0], sample_rate):
self.images.append(get_input_dict(diffusion_results_itr[i:i+1,...],idx,dtype = torch.float32))
idx += 1
self.run_dust3r(input_images=self.images, clean_pc=True)
diffusion_results_itr = self.nvs_sparse_view(itr)
# diffusion_results_itr = torch.randn([25, 576, 1024, 3]).to(self.device)
diffusion_results_itr = diffusion_results_itr.permute(0,3,1,2)
all_results.append(diffusion_results_itr)
return all_results
def nvs_single_view_nbv(self):
# lef and right
# d_theta and a_phi 是搜索空间的顶点间隔
all_results = []
## FIXME: hard coded
sample_rate = 6
max_itr = 3
idx = 1 #初始包含1张ref image
for itr in range(0, max_itr):
if itr == 0:
self.images = [self.images[0]] #去掉后一份copy
diffusion_results_itr = self.nvs_single_view()
# diffusion_results_itr = torch.randn([25, 576, 1024, 3]).to(self.device)
diffusion_results_itr = diffusion_results_itr.permute(0,3,1,2)
all_results.append(diffusion_results_itr)
else:
for i in range(0+sample_rate, diffusion_results_itr.shape[0], sample_rate):
self.images.append(get_input_dict(diffusion_results_itr[i:i+1,...],idx,dtype = torch.float32))
idx += 1
self.run_dust3r(input_images=self.images, clean_pc=True)
diffusion_results_itr = self.nvs_sparse_view(itr)
# diffusion_results_itr = torch.randn([25, 576, 1024, 3]).to(self.device)
diffusion_results_itr = diffusion_results_itr.permute(0,3,1,2)
all_results.append(diffusion_results_itr)
return all_results
def setup_diffusion(self):
seed_everything(self.opts.seed)
config = OmegaConf.load(self.opts.config)
model_config = config.pop("model", OmegaConf.create())
## set use_checkpoint as False as when using deepspeed, it encounters an error "deepspeed backend not set"
model_config['params']['unet_config']['params']['use_checkpoint'] = False
model = instantiate_from_config(model_config)
model = model.to(self.device)
model.cond_stage_model.device = self.device
model.perframe_ae = self.opts.perframe_ae
assert os.path.exists(self.opts.ckpt_path), "Error: checkpoint Not Found!"
model = load_model_checkpoint(model, self.opts.ckpt_path)
model.eval()
self.diffusion = model
h, w = self.opts.height // 8, self.opts.width // 8
channels = model.model.diffusion_model.out_channels
n_frames = self.opts.video_length
self.noise_shape = [self.opts.bs, channels, n_frames, h, w]
def setup_dust3r(self):
self.dust3r = load_model(self.opts.model_path, self.device)
def load_initial_images(self, image_dir):
## load images
## dict_keys(['img', 'true_shape', 'idx', 'instance', 'img_ori']),张量形式
images = load_images([image_dir], size=512,force_1024 = True)
img_ori = (images[0]['img_ori'].squeeze(0).permute(1,2,0)+1.)/2. # [576,1024,3] [0,1]
# img_ori = Image.open(image_dir).convert('RGB')
# transform = transforms.Compose([
# transforms.Resize((576, 1024)),
# transforms.ToTensor(),
# transforms.Normalize((0., 0., 0.), (1., 1., 1.)) # 归一化到[-1,1],如果要归一化到[0,1],请使用transforms.Normalize((0., 0., 0.), (1., 1., 1.))
# ])
# img_ori = transform(img_ori).permute(1,2,0).to(self.device)
if len(images) == 1:
images = [images[0], copy.deepcopy(images[0])]
images[1]['idx'] = 1
return images, img_ori
def run_gradio(self,i2v_input_image, i2v_elevation, i2v_center_scale, i2v_d_phi, i2v_d_theta, i2v_d_r, i2v_steps, i2v_seed):
self.opts.elevation = float(i2v_elevation)
self.opts.center_scale = float(i2v_center_scale)
self.opts.ddim_steps = i2v_steps
self.gradio_traj = [float(i) for i in i2v_d_phi.split()],[float(i) for i in i2v_d_theta.split()],[float(i) for i in i2v_d_r.split()]
seed_everything(i2v_seed)
transform = transforms.Compose([
transforms.Resize(576),
transforms.CenterCrop((576,1024)),
])
torch.cuda.empty_cache()
img_tensor = torch.from_numpy(i2v_input_image).permute(2, 0, 1).unsqueeze(0).float().to(self.device)
img_tensor = (img_tensor / 255. - 0.5) * 2
image_tensor_resized = transform(img_tensor) #1,3,h,w
images = get_input_dict(image_tensor_resized,idx = 0,dtype = torch.float32)
images = [images, copy.deepcopy(images)]
images[1]['idx'] = 1
self.images = images
self.img_ori = (image_tensor_resized.squeeze(0).permute(1,2,0) + 1.)/2.
# self.images: torch.Size([1, 3, 288, 512]), [-1,1]
# self.img_ori: torch.Size([576, 1024, 3]), [0,1]
# self.images, self.img_ori = self.load_initial_images(image_dir=i2v_input_image)
self.run_dust3r(input_images=self.images)
self.nvs_single_view(gradio=True)
traj_dir = os.path.join(self.opts.save_dir, "viz_traj.mp4")
gen_dir = os.path.join(self.opts.save_dir, "diffusion0.mp4")
return traj_dir, gen_dir |