File size: 21,516 Bytes
df13f4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a6532e3
df13f4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
752a7e2
df13f4b
 
752a7e2
 
df13f4b
b2bdc68
 
 
 
 
df13f4b
 
b2bdc68
df13f4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6679c1c
df13f4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ccdbd8
 
b2bdc68
 
df13f4b
 
 
6679c1c
b2bdc68
df13f4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
import sys
sys.path.append('./extern/dust3r')
from dust3r.inference import inference, load_model
from dust3r.utils.image import load_images
from dust3r.image_pairs import make_pairs
from dust3r.cloud_opt import global_aligner, GlobalAlignerMode
from dust3r.utils.device import to_numpy
import trimesh
import torch
import numpy as np
import torchvision
import os
import copy
import cv2  
from PIL import Image
import pytorch3d
from pytorch3d.structures import Pointclouds
from torchvision.utils import save_image
import torch.nn.functional as F
import torchvision.transforms as transforms
from PIL import Image
from utils.pvd_utils import *
from omegaconf import OmegaConf
from pytorch_lightning import seed_everything
from utils.diffusion_utils import instantiate_from_config,load_model_checkpoint,image_guided_synthesis
from pathlib import Path
from torchvision.utils import save_image

class ViewCrafter:
    def __init__(self, opts, gradio = False):
        self.opts = opts
        self.device = opts.device
        self.setup_dust3r()
        # self.setup_diffusion()
        # initialize ref images, pcd
        if not gradio:
            self.images, self.img_ori = self.load_initial_images(image_dir=self.opts.image_dir)
            self.run_dust3r(input_images=self.images)
        
    def run_dust3r(self, input_images,clean_pc = False):
        pairs = make_pairs(input_images, scene_graph='complete', prefilter=None, symmetrize=True)
        output = inference(pairs, self.dust3r, self.device, batch_size=self.opts.batch_size)

        mode = GlobalAlignerMode.PointCloudOptimizer #if len(self.images) > 2 else GlobalAlignerMode.PairViewer
        scene = global_aligner(output, device=self.device, mode=mode)
        if mode == GlobalAlignerMode.PointCloudOptimizer:
            loss = scene.compute_global_alignment(init='mst', niter=self.opts.niter, schedule=self.opts.schedule, lr=self.opts.lr)

        if clean_pc:
            self.scene = scene.clean_pointcloud()
        else:
            self.scene = scene

    def render_pcd(self,pts3d,imgs,masks,views,renderer,device):
        
        imgs = to_numpy(imgs)
        pts3d = to_numpy(pts3d)

        if masks == None:
            pts = torch.from_numpy(np.concatenate([p for p in pts3d])).view(-1, 3).to(device)
            col = torch.from_numpy(np.concatenate([p for p in imgs])).view(-1, 3).to(device)
        else:
            # masks = to_numpy(masks)
            pts = torch.from_numpy(np.concatenate([p[m] for p, m in zip(pts3d, masks)])).to(device)
            col = torch.from_numpy(np.concatenate([p[m] for p, m in zip(imgs, masks)])).to(device)
        
        color_mask = torch.ones(col.shape).to(device)

        # point_cloud_mask = Pointclouds(points=[pts],features=[color_mask]).extend(views)
        point_cloud = Pointclouds(points=[pts], features=[col]).extend(views)
        images = renderer(point_cloud)
        # view_masks = renderer(point_cloud_mask)
        return images, None
    
    def run_render(self, pcd, imgs,masks, H, W, camera_traj,num_views,use_cpu=False):
        if use_cpu:
            device = torch.device("cpu")
        else:
            device = self.device
        render_setup = setup_renderer(camera_traj, image_size=(H,W))
        renderer = render_setup['renderer']
        render_results, viewmask = self.render_pcd(pcd, imgs, masks, num_views,renderer,device)
        return render_results, viewmask

    
    def run_diffusion(self, renderings):

        prompts = [self.opts.prompt]
        videos = (renderings * 2. - 1.).permute(3,0,1,2).unsqueeze(0).to(self.device)
        condition_index = [0]
        with torch.no_grad(), torch.cuda.amp.autocast():
            # [1,1,c,t,h,w]
            batch_samples = image_guided_synthesis(self.diffusion, prompts, videos, self.noise_shape, self.opts.n_samples, self.opts.ddim_steps, self.opts.ddim_eta, \
                               self.opts.unconditional_guidance_scale, self.opts.cfg_img, self.opts.frame_stride, self.opts.text_input, self.opts.multiple_cond_cfg, self.opts.timestep_spacing, self.opts.guidance_rescale, condition_index)

            # save_results_seperate(batch_samples[0], self.opts.save_dir, fps=8)
            # torch.Size([1, 3, 25, 576, 1024]) [-1,1]

        return torch.clamp(batch_samples[0][0].permute(1,2,3,0), -1., 1.) 

    def nvs_single_view(self, gradio=False):
        # 最后一个view为 0 pose
        c2ws = self.scene.get_im_poses().detach()[1:] 
        principal_points = self.scene.get_principal_points().detach()[1:] #cx cy
        focals = self.scene.get_focals().detach()[1:] 
        shape = self.images[0]['true_shape']
        H, W = int(shape[0][0]), int(shape[0][1])
        pcd = [i.detach() for i in self.scene.get_pts3d(clip_thred=self.opts.dpt_trd)] # a list of points of size whc
        depth = [i.detach() for i in self.scene.get_depthmaps()]
        depth_avg = depth[-1][H//2,W//2] #以图像中心处的depth(z)为球心旋转
        radius = depth_avg*self.opts.center_scale #缩放调整

        ## change coordinate
        c2ws,pcd =  world_point_to_obj(poses=c2ws, points=torch.stack(pcd), k=-1, r=radius, elevation=self.opts.elevation, device=self.device)

        imgs = np.array(self.scene.imgs)
        
        masks = None

        if self.opts.mode == 'single_view_nbv':
            ## 输入candidate->渲染mask->最大mask对应的pose作为nbv
            ## nbv模式下self.opts.d_theta[0], self.opts.d_phi[0]代表search space中的网格theta, phi之间的间距; self.opts.d_phi[0]的符号代表方向,分为左右两个方向
            ## FIXME hard coded candidate view数量, 以left为例,第一次迭代从[左,左上]中选取, 从第二次开始可以从[左,左上,左下]中选取
            num_candidates = 2
            candidate_poses,thetas,phis = generate_candidate_poses(c2ws, H, W, focals, principal_points, self.opts.d_theta[0], self.opts.d_phi[0],num_candidates, self.device)
            _, viewmask = self.run_render([pcd[-1]], [imgs[-1]],masks, H, W, candidate_poses,num_candidates,use_cpu=False)
            nbv_id = torch.argmin(viewmask.sum(dim=[1,2,3])).item()
            save_image( viewmask.permute(0,3,1,2), os.path.join(self.opts.save_dir,f"candidate_mask0_nbv{nbv_id}.png"), normalize=True, value_range=(0, 1))
            theta_nbv = thetas[nbv_id]
            phi_nbv = phis[nbv_id]
            # generate camera trajectory from T_curr to T_nbv
            camera_traj,num_views = generate_traj_specified(c2ws, H, W, focals, principal_points, theta_nbv, phi_nbv, self.opts.d_r[0],self.opts.video_length, self.device)
            # 重置elevation
            self.opts.elevation -= theta_nbv
        elif self.opts.mode == 'single_view_target':
            camera_traj,num_views = generate_traj_specified(c2ws, H, W, focals, principal_points, self.opts.d_theta[0], self.opts.d_phi[0], self.opts.d_r[0],self.opts.video_length, self.device)
        elif self.opts.mode == 'single_view_txt':
            if not gradio:
                with open(self.opts.traj_txt, 'r') as file:
                    lines = file.readlines()
                    phi = [float(i) for i in lines[0].split()]
                    theta = [float(i) for i in lines[1].split()]
                    r = [float(i) for i in lines[2].split()]
            else: 
                phi, theta, r = self.gradio_traj
            # device = torch.device("cpu")
            device = self.device
            camera_traj,num_views = generate_traj_txt(c2ws, H, W, focals, principal_points, phi, theta, r,self.opts.video_length, device,viz_traj=True, save_dir = self.opts.save_dir)
            # camera_traj,num_views = generate_traj_txt(c2ws, H, W, focals, principal_points, phi, theta, r,self.opts.video_length, self.device,viz_traj=True, save_dir = self.opts.save_dir)
        else:
            raise KeyError(f"Invalid Mode: {self.opts.mode}")

        render_results, viewmask = self.run_render([pcd[-1]], [imgs[-1]],masks, H, W, camera_traj,num_views,use_cpu=False)
        render_results = render_results.to(self.device)
        render_results = F.interpolate(render_results.permute(0,3,1,2), size=(576, 1024), mode='bilinear', align_corners=False).permute(0,2,3,1)
        render_results[0] = self.img_ori
        if self.opts.mode == 'single_view_txt':
            if phi[-1]==0. and theta[-1]==0. and r[-1]==0.:
                render_results[-1] = self.img_ori
                
        save_video(render_results, os.path.join(self.opts.save_dir, 'render0.mp4'))
        save_pointcloud_with_normals([imgs[-1]], [pcd[-1]], msk=None, save_path=os.path.join(self.opts.save_dir,'pcd0.ply') , mask_pc=False, reduce_pc=False)
        diffusion_results = self.run_diffusion(render_results)
        save_video((diffusion_results + 1.0) / 2.0, os.path.join(self.opts.save_dir, 'diffusion0.mp4'))

        return diffusion_results

    def nvs_sparse_view(self,iter):

        c2ws = self.scene.get_im_poses().detach()
        principal_points = self.scene.get_principal_points().detach()
        focals = self.scene.get_focals().detach()
        shape = self.images[0]['true_shape']
        H, W = int(shape[0][0]), int(shape[0][1])
        pcd = [i.detach() for i in self.scene.get_pts3d(clip_thred=self.opts.dpt_trd)] # a list of points of size whc
        depth = [i.detach() for i in self.scene.get_depthmaps()]
        depth_avg = depth[0][H//2,W//2] #以ref图像中心处的depth(z)为球心旋转
        radius = depth_avg*self.opts.center_scale #缩放调整

        ## masks for cleaner point cloud
        self.scene.min_conf_thr = float(self.scene.conf_trf(torch.tensor(self.opts.min_conf_thr)))
        masks = self.scene.get_masks()
        depth = self.scene.get_depthmaps()
        bgs_mask = [dpt > self.opts.bg_trd*(torch.max(dpt[40:-40,:])+torch.min(dpt[40:-40,:])) for dpt in depth]
        masks_new = [m+mb for m, mb in zip(masks,bgs_mask)] 
        masks = to_numpy(masks_new)

        ## render, 从c2ws[0]即ref image对应的相机开始
        imgs = np.array(self.scene.imgs)

        if self.opts.mode == 'single_view_ref_iterative':
            c2ws,pcd =  world_point_to_obj(poses=c2ws, points=torch.stack(pcd), k=0, r=radius, elevation=self.opts.elevation, device=self.device)
            camera_traj,num_views = generate_traj_specified(c2ws[0:1], H, W, focals[0:1], principal_points[0:1], self.opts.d_theta[iter], self.opts.d_phi[iter], self.opts.d_r[iter],self.opts.video_length, self.device)
            render_results, viewmask = self.run_render(pcd, imgs,masks, H, W, camera_traj,num_views)
            render_results = F.interpolate(render_results.permute(0,3,1,2), size=(576, 1024), mode='bilinear', align_corners=False).permute(0,2,3,1)
            render_results[0] = self.img_ori
        elif self.opts.mode == 'single_view_1drc_iterative':
            self.opts.elevation -= self.opts.d_theta[iter-1]
            c2ws,pcd =  world_point_to_obj(poses=c2ws, points=torch.stack(pcd), k=-1, r=radius, elevation=self.opts.elevation, device=self.device)
            camera_traj,num_views = generate_traj_specified(c2ws[-1:], H, W, focals[-1:], principal_points[-1:], self.opts.d_theta[iter], self.opts.d_phi[iter], self.opts.d_r[iter],self.opts.video_length, self.device)
            render_results, viewmask = self.run_render(pcd, imgs,masks, H, W, camera_traj,num_views)
            render_results = F.interpolate(render_results.permute(0,3,1,2), size=(576, 1024), mode='bilinear', align_corners=False).permute(0,2,3,1)
            render_results[0] = (self.images[-1]['img_ori'].squeeze(0).permute(1,2,0)+1.)/2.
        elif self.opts.mode == 'single_view_nbv':
            c2ws,pcd =  world_point_to_obj(poses=c2ws, points=torch.stack(pcd), k=-1, r=radius, elevation=self.opts.elevation, device=self.device)
            ## 输入candidate->渲染mask->最大mask对应的pose作为nbv
            ## nbv模式下self.opts.d_theta[0], self.opts.d_phi[0]代表search space中的网格theta, phi之间的间距; self.opts.d_phi[0]的符号代表方向,分为左右两个方向
            ## FIXME hard coded candidate view数量, 以left为例,第一次迭代从[左,左上]中选取, 从第二次开始可以从[左,左上,左下]中选取
            num_candidates = 3
            candidate_poses,thetas,phis = generate_candidate_poses(c2ws[-1:], H, W, focals[-1:], principal_points[-1:], self.opts.d_theta[0], self.opts.d_phi[0], num_candidates, self.device)
            _, viewmask = self.run_render(pcd, imgs,masks, H, W, candidate_poses,num_candidates)
            nbv_id = torch.argmin(viewmask.sum(dim=[1,2,3])).item()
            save_image(viewmask.permute(0,3,1,2), os.path.join(self.opts.save_dir,f"candidate_mask{iter}_nbv{nbv_id}.png"), normalize=True, value_range=(0, 1))
            theta_nbv = thetas[nbv_id]
            phi_nbv = phis[nbv_id]   
            # generate camera trajectory from T_curr to T_nbv
            camera_traj,num_views = generate_traj_specified(c2ws[-1:], H, W, focals[-1:], principal_points[-1:], theta_nbv, phi_nbv, self.opts.d_r[0],self.opts.video_length, self.device)
            # 重置elevation
            self.opts.elevation -= theta_nbv    
            render_results, viewmask = self.run_render(pcd, imgs,masks, H, W, camera_traj,num_views)
            render_results = F.interpolate(render_results.permute(0,3,1,2), size=(576, 1024), mode='bilinear', align_corners=False).permute(0,2,3,1)
            render_results[0] = (self.images[-1]['img_ori'].squeeze(0).permute(1,2,0)+1.)/2. 
        else:
            raise KeyError(f"Invalid Mode: {self.opts.mode}")

        save_video(render_results, os.path.join(self.opts.save_dir, f'render{iter}.mp4'))
        save_pointcloud_with_normals(imgs, pcd, msk=masks, save_path=os.path.join(self.opts.save_dir, f'pcd{iter}.ply') , mask_pc=True, reduce_pc=False)
        diffusion_results = self.run_diffusion(render_results)
        save_video((diffusion_results + 1.0) / 2.0, os.path.join(self.opts.save_dir, f'diffusion{iter}.mp4'))
        # torch.Size([25, 576, 1024, 3])
        return diffusion_results
    
    def nvs_single_view_ref_iterative(self):

        all_results = []
        sample_rate = 6
        idx = 1 #初始包含1张ref image
        for itr in range(0, len(self.opts.d_phi)):
            if itr == 0:
                self.images = [self.images[0]] #去掉后一份copy
                diffusion_results_itr = self.nvs_single_view()
                # diffusion_results_itr = torch.randn([25, 576, 1024, 3]).to(self.device)
                diffusion_results_itr = diffusion_results_itr.permute(0,3,1,2)
                all_results.append(diffusion_results_itr)
            else:
                for i in range(0+sample_rate, diffusion_results_itr.shape[0], sample_rate):
                    self.images.append(get_input_dict(diffusion_results_itr[i:i+1,...],idx,dtype = torch.float32))
                    idx += 1
                self.run_dust3r(input_images=self.images, clean_pc=True)
                diffusion_results_itr = self.nvs_sparse_view(itr)
                # diffusion_results_itr = torch.randn([25, 576, 1024, 3]).to(self.device)
                diffusion_results_itr = diffusion_results_itr.permute(0,3,1,2)
                all_results.append(diffusion_results_itr)
        return all_results

    def nvs_single_view_1drc_iterative(self):

        all_results = []
        sample_rate = 6
        idx = 1 #初始包含1张ref image
        for itr in range(0, len(self.opts.d_phi)):
            if itr == 0:
                self.images = [self.images[0]] #去掉后一份copy
                diffusion_results_itr = self.nvs_single_view()
                # diffusion_results_itr = torch.randn([25, 576, 1024, 3]).to(self.device)
                diffusion_results_itr = diffusion_results_itr.permute(0,3,1,2)
                all_results.append(diffusion_results_itr)
            else:
                for i in range(0+sample_rate, diffusion_results_itr.shape[0], sample_rate):
                    self.images.append(get_input_dict(diffusion_results_itr[i:i+1,...],idx,dtype = torch.float32))
                    idx += 1
                self.run_dust3r(input_images=self.images, clean_pc=True)
                diffusion_results_itr = self.nvs_sparse_view(itr)
                # diffusion_results_itr = torch.randn([25, 576, 1024, 3]).to(self.device)
                diffusion_results_itr = diffusion_results_itr.permute(0,3,1,2)
                all_results.append(diffusion_results_itr)
        return all_results

    def nvs_single_view_nbv(self):
        # lef and right
        # d_theta and a_phi 是搜索空间的顶点间隔
        all_results = []
        ## FIXME: hard coded
        sample_rate = 6
        max_itr = 3

        idx = 1 #初始包含1张ref image
        for itr in range(0, max_itr):
            if itr == 0:
                self.images = [self.images[0]] #去掉后一份copy
                diffusion_results_itr = self.nvs_single_view()
                # diffusion_results_itr = torch.randn([25, 576, 1024, 3]).to(self.device)
                diffusion_results_itr = diffusion_results_itr.permute(0,3,1,2)
                all_results.append(diffusion_results_itr)
            else:
                for i in range(0+sample_rate, diffusion_results_itr.shape[0], sample_rate):
                    self.images.append(get_input_dict(diffusion_results_itr[i:i+1,...],idx,dtype = torch.float32))
                    idx += 1
                self.run_dust3r(input_images=self.images, clean_pc=True)
                diffusion_results_itr = self.nvs_sparse_view(itr)
                # diffusion_results_itr = torch.randn([25, 576, 1024, 3]).to(self.device)
                diffusion_results_itr = diffusion_results_itr.permute(0,3,1,2)
                all_results.append(diffusion_results_itr)
        return all_results

    def setup_diffusion(self):
        seed_everything(self.opts.seed)

        config = OmegaConf.load(self.opts.config)
        model_config = config.pop("model", OmegaConf.create())

        ## set use_checkpoint as False as when using deepspeed, it encounters an error "deepspeed backend not set"
        model_config['params']['unet_config']['params']['use_checkpoint'] = False
        model = instantiate_from_config(model_config)
        model = model.to(self.device)
        model.cond_stage_model.device = self.device
        model.perframe_ae = self.opts.perframe_ae
        assert os.path.exists(self.opts.ckpt_path), "Error: checkpoint Not Found!"
        model = load_model_checkpoint(model, self.opts.ckpt_path)
        model.eval()
        self.diffusion = model

        h, w = self.opts.height // 8, self.opts.width // 8
        channels = model.model.diffusion_model.out_channels
        n_frames = self.opts.video_length
        self.noise_shape = [self.opts.bs, channels, n_frames, h, w]

    def setup_dust3r(self):
        self.dust3r = load_model(self.opts.model_path, self.device)
    
    def load_initial_images(self, image_dir):
        ## load images
        ## dict_keys(['img', 'true_shape', 'idx', 'instance', 'img_ori']),张量形式
        images = load_images([image_dir], size=512,force_1024 = True)
        img_ori = (images[0]['img_ori'].squeeze(0).permute(1,2,0)+1.)/2. # [576,1024,3] [0,1]

        # img_ori = Image.open(image_dir).convert('RGB')

        # transform = transforms.Compose([
        #     transforms.Resize((576, 1024)),  
        #     transforms.ToTensor(), 
        #     transforms.Normalize((0., 0., 0.), (1., 1., 1.))  # 归一化到[-1,1],如果要归一化到[0,1],请使用transforms.Normalize((0., 0., 0.), (1., 1., 1.))
        # ])

        # img_ori = transform(img_ori).permute(1,2,0).to(self.device)
        if len(images) == 1:
            images = [images[0], copy.deepcopy(images[0])]
            images[1]['idx'] = 1

        return images, img_ori
    
    def run_gradio(self,i2v_input_image, i2v_elevation, i2v_center_scale, i2v_d_phi, i2v_d_theta, i2v_d_r, i2v_steps, i2v_seed):
        self.opts.elevation = float(i2v_elevation)
        self.opts.center_scale = float(i2v_center_scale)
        self.opts.ddim_steps = i2v_steps
        self.gradio_traj = [float(i) for i in i2v_d_phi.split()],[float(i) for i in i2v_d_theta.split()],[float(i) for i in i2v_d_r.split()]
        seed_everything(i2v_seed)
        transform = transforms.Compose([
            transforms.Resize(576),
            transforms.CenterCrop((576,1024)),
            ])
        torch.cuda.empty_cache()
        img_tensor = torch.from_numpy(i2v_input_image).permute(2, 0, 1).unsqueeze(0).float().to(self.device)
        img_tensor = (img_tensor / 255. - 0.5) * 2
        image_tensor_resized = transform(img_tensor) #1,3,h,w
        images = get_input_dict(image_tensor_resized,idx = 0,dtype = torch.float32)
        images = [images, copy.deepcopy(images)]
        images[1]['idx'] = 1
        self.images = images
        self.img_ori = (image_tensor_resized.squeeze(0).permute(1,2,0) + 1.)/2.

        # self.images: torch.Size([1, 3, 288, 512]), [-1,1]
        # self.img_ori:  torch.Size([576, 1024, 3]), [0,1]
        # self.images, self.img_ori = self.load_initial_images(image_dir=i2v_input_image)
        self.run_dust3r(input_images=self.images)
        self.nvs_single_view(gradio=True)

        traj_dir = os.path.join(self.opts.save_dir, "viz_traj.mp4")
        gen_dir = os.path.join(self.opts.save_dir, "diffusion0.mp4")
        
        return traj_dir, gen_dir