File size: 13,252 Bytes
df13f4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
# Copyright (C) 2022-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).

# --------------------------------------------------------
# Data augmentation for training stereo and flow
# --------------------------------------------------------

# References
# https://github.com/autonomousvision/unimatch/blob/master/dataloader/stereo/transforms.py
# https://github.com/autonomousvision/unimatch/blob/master/dataloader/flow/transforms.py


import numpy as np
import random
from PIL import Image

import cv2
cv2.setNumThreads(0)
cv2.ocl.setUseOpenCL(False)

import torch
from torchvision.transforms import ColorJitter
import torchvision.transforms.functional as FF

class StereoAugmentor(object):

    def __init__(self, crop_size, scale_prob=0.5, scale_xonly=True, lhth=800., lminscale=0.0, lmaxscale=1.0, hminscale=-0.2, hmaxscale=0.4, scale_interp_nearest=True, rightjitterprob=0.5, v_flip_prob=0.5, color_aug_asym=True, color_choice_prob=0.5):
        self.crop_size = crop_size
        self.scale_prob = scale_prob
        self.scale_xonly = scale_xonly
        self.lhth = lhth
        self.lminscale = lminscale
        self.lmaxscale = lmaxscale
        self.hminscale = hminscale
        self.hmaxscale = hmaxscale
        self.scale_interp_nearest = scale_interp_nearest
        self.rightjitterprob = rightjitterprob
        self.v_flip_prob = v_flip_prob
        self.color_aug_asym = color_aug_asym
        self.color_choice_prob = color_choice_prob
        
    def _random_scale(self, img1, img2, disp):
        ch,cw = self.crop_size
        h,w = img1.shape[:2]
        if self.scale_prob>0. and np.random.rand()<self.scale_prob:
            min_scale, max_scale = (self.lminscale,self.lmaxscale) if min(h,w) < self.lhth else (self.hminscale,self.hmaxscale)
            scale_x = 2. ** np.random.uniform(min_scale, max_scale)
            scale_x = np.clip(scale_x, (cw+8) / float(w), None)
            scale_y = 1.
            if not self.scale_xonly:
                scale_y = scale_x
                scale_y = np.clip(scale_y, (ch+8) / float(h), None)
            img1 = cv2.resize(img1, None, fx=scale_x, fy=scale_y, interpolation=cv2.INTER_LINEAR)
            img2 = cv2.resize(img2, None, fx=scale_x, fy=scale_y, interpolation=cv2.INTER_LINEAR)
            disp = cv2.resize(disp, None, fx=scale_x, fy=scale_y, interpolation=cv2.INTER_LINEAR if not self.scale_interp_nearest else cv2.INTER_NEAREST) * scale_x
        else: # check if we need to resize to be able to crop 
            h,w = img1.shape[:2]
            clip_scale = (cw+8) / float(w)
            if clip_scale>1.:
                scale_x = clip_scale
                scale_y = scale_x if not self.scale_xonly else 1.0
                img1 = cv2.resize(img1, None, fx=scale_x, fy=scale_y, interpolation=cv2.INTER_LINEAR)
                img2 = cv2.resize(img2, None, fx=scale_x, fy=scale_y, interpolation=cv2.INTER_LINEAR)
                disp = cv2.resize(disp, None, fx=scale_x, fy=scale_y, interpolation=cv2.INTER_LINEAR if not self.scale_interp_nearest else cv2.INTER_NEAREST) * scale_x
        return img1, img2, disp 
                
    def _random_crop(self, img1, img2, disp): 
        h,w = img1.shape[:2]
        ch,cw = self.crop_size
        assert ch<=h and cw<=w, (img1.shape, h,w,ch,cw)
        offset_x = np.random.randint(w - cw + 1)
        offset_y = np.random.randint(h - ch + 1)
        img1 = img1[offset_y:offset_y+ch,offset_x:offset_x+cw]
        img2 = img2[offset_y:offset_y+ch,offset_x:offset_x+cw]
        disp = disp[offset_y:offset_y+ch,offset_x:offset_x+cw]
        return img1, img2, disp
    
    def _random_vflip(self, img1, img2, disp):
        # vertical flip
        if self.v_flip_prob>0 and np.random.rand() < self.v_flip_prob:
            img1 = np.copy(np.flipud(img1))
            img2 = np.copy(np.flipud(img2))
            disp = np.copy(np.flipud(disp))
        return img1, img2, disp
        
    def _random_rotate_shift_right(self, img2):
        if self.rightjitterprob>0. and np.random.rand()<self.rightjitterprob:
            angle, pixel = 0.1, 2
            px = np.random.uniform(-pixel, pixel)
            ag = np.random.uniform(-angle, angle)
            image_center = (np.random.uniform(0, img2.shape[0]), np.random.uniform(0, img2.shape[1])  )
            rot_mat = cv2.getRotationMatrix2D(image_center, ag, 1.0)
            img2 = cv2.warpAffine(img2, rot_mat, img2.shape[1::-1], flags=cv2.INTER_LINEAR)
            trans_mat = np.float32([[1, 0, 0], [0, 1, px]])
            img2 = cv2.warpAffine(img2, trans_mat, img2.shape[1::-1], flags=cv2.INTER_LINEAR)
        return img2
            
    def _random_color_contrast(self, img1, img2):
        if np.random.random() < 0.5:
            contrast_factor = np.random.uniform(0.8, 1.2)
            img1 = FF.adjust_contrast(img1, contrast_factor)
            if self.color_aug_asym and np.random.random() < 0.5: contrast_factor = np.random.uniform(0.8, 1.2)
            img2 = FF.adjust_contrast(img2, contrast_factor)
        return img1, img2
    def _random_color_gamma(self, img1, img2):
        if np.random.random() < 0.5:
            gamma = np.random.uniform(0.7, 1.5)
            img1 = FF.adjust_gamma(img1, gamma)
            if self.color_aug_asym and np.random.random() < 0.5: gamma = np.random.uniform(0.7, 1.5)
            img2 = FF.adjust_gamma(img2, gamma)
        return img1, img2
    def _random_color_brightness(self, img1, img2):
        if np.random.random() < 0.5:
            brightness = np.random.uniform(0.5, 2.0)
            img1 = FF.adjust_brightness(img1, brightness)
            if self.color_aug_asym and np.random.random() < 0.5: brightness = np.random.uniform(0.5, 2.0)
            img2 = FF.adjust_brightness(img2, brightness)
        return img1, img2
    def _random_color_hue(self, img1, img2):
        if np.random.random() < 0.5:
            hue = np.random.uniform(-0.1, 0.1)
            img1 = FF.adjust_hue(img1, hue)
            if self.color_aug_asym and np.random.random() < 0.5: hue = np.random.uniform(-0.1, 0.1)
            img2 = FF.adjust_hue(img2, hue)
        return img1, img2
    def _random_color_saturation(self, img1, img2):
        if np.random.random() < 0.5:
            saturation = np.random.uniform(0.8, 1.2)
            img1 = FF.adjust_saturation(img1, saturation)
            if self.color_aug_asym and np.random.random() < 0.5: saturation = np.random.uniform(-0.8,1.2)
            img2 = FF.adjust_saturation(img2, saturation)
        return img1, img2   
    def _random_color(self, img1, img2):
        trfs = [self._random_color_contrast,self._random_color_gamma,self._random_color_brightness,self._random_color_hue,self._random_color_saturation]
        img1 = Image.fromarray(img1.astype('uint8'))
        img2 = Image.fromarray(img2.astype('uint8'))
        if np.random.random() < self.color_choice_prob:
            # A single transform
            t = random.choice(trfs)
            img1, img2 = t(img1, img2)
        else:
            # Combination of trfs
            # Random order
            random.shuffle(trfs)
            for t in trfs:
                img1, img2 = t(img1, img2)
        img1 = np.array(img1).astype(np.float32)
        img2 = np.array(img2).astype(np.float32)
        return img1, img2
                    
    def __call__(self, img1, img2, disp, dataset_name):
        img1, img2, disp = self._random_scale(img1, img2, disp)
        img1, img2, disp = self._random_crop(img1, img2, disp)
        img1, img2, disp = self._random_vflip(img1, img2, disp)
        img2 = self._random_rotate_shift_right(img2)
        img1, img2 = self._random_color(img1, img2)
        return img1, img2, disp



class FlowAugmentor:

    def __init__(self, crop_size, min_scale=-0.2, max_scale=0.5, spatial_aug_prob=0.8, stretch_prob=0.8, max_stretch=0.2, h_flip_prob=0.5, v_flip_prob=0.1, asymmetric_color_aug_prob=0.2):
    
        # spatial augmentation params
        self.crop_size = crop_size
        self.min_scale = min_scale
        self.max_scale = max_scale
        self.spatial_aug_prob = spatial_aug_prob
        self.stretch_prob = stretch_prob
        self.max_stretch = max_stretch

        # flip augmentation params
        self.h_flip_prob = h_flip_prob
        self.v_flip_prob = v_flip_prob

        # photometric augmentation params
        self.photo_aug = ColorJitter(brightness=0.4, contrast=0.4, saturation=0.4, hue=0.5 / 3.14)

        self.asymmetric_color_aug_prob = asymmetric_color_aug_prob
        
    def color_transform(self, img1, img2):
        """ Photometric augmentation """

        # asymmetric
        if np.random.rand() < self.asymmetric_color_aug_prob:
            img1 = np.array(self.photo_aug(Image.fromarray(img1)), dtype=np.uint8)
            img2 = np.array(self.photo_aug(Image.fromarray(img2)), dtype=np.uint8)

        # symmetric
        else:
            image_stack = np.concatenate([img1, img2], axis=0)
            image_stack = np.array(self.photo_aug(Image.fromarray(image_stack)), dtype=np.uint8)
            img1, img2 = np.split(image_stack, 2, axis=0)

        return img1, img2

    def _resize_flow(self, flow, scale_x, scale_y, factor=1.0):
        if np.all(np.isfinite(flow)):
            flow = cv2.resize(flow, None, fx=scale_x/factor, fy=scale_y/factor, interpolation=cv2.INTER_LINEAR)
            flow = flow * [scale_x, scale_y]
        else: # sparse version
            fx, fy = scale_x, scale_y
            ht, wd = flow.shape[:2]
            coords = np.meshgrid(np.arange(wd), np.arange(ht))
            coords = np.stack(coords, axis=-1)

            coords = coords.reshape(-1, 2).astype(np.float32)
            flow = flow.reshape(-1, 2).astype(np.float32)
            valid = np.isfinite(flow[:,0])

            coords0 = coords[valid]
            flow0 = flow[valid]

            ht1 = int(round(ht * fy/factor))
            wd1 = int(round(wd * fx/factor))
            
            rescale = np.expand_dims(np.array([fx, fy]), axis=0)
            coords1 = coords0 * rescale / factor
            flow1 = flow0 * rescale

            xx = np.round(coords1[:, 0]).astype(np.int32)
            yy = np.round(coords1[:, 1]).astype(np.int32)

            v = (xx > 0) & (xx < wd1) & (yy > 0) & (yy < ht1)
            xx = xx[v]
            yy = yy[v]
            flow1 = flow1[v]

            flow = np.inf * np.ones([ht1, wd1, 2], dtype=np.float32) # invalid value every where, before we fill it with the correct ones
            flow[yy, xx] = flow1
        return flow
        
    def spatial_transform(self, img1, img2, flow, dname):
    
        if np.random.rand() < self.spatial_aug_prob:
            # randomly sample scale
            ht, wd = img1.shape[:2]
            clip_min_scale = np.maximum(
                (self.crop_size[0] + 8) / float(ht),
                (self.crop_size[1] + 8) / float(wd))
            min_scale, max_scale = self.min_scale, self.max_scale
            scale = 2 ** np.random.uniform(self.min_scale, self.max_scale)
            scale_x = scale
            scale_y = scale
            if np.random.rand() < self.stretch_prob:
                scale_x *= 2 ** np.random.uniform(-self.max_stretch, self.max_stretch)
                scale_y *= 2 ** np.random.uniform(-self.max_stretch, self.max_stretch)
            scale_x = np.clip(scale_x, clip_min_scale, None)
            scale_y = np.clip(scale_y, clip_min_scale, None)
            # rescale the images
            img1 = cv2.resize(img1, None, fx=scale_x, fy=scale_y, interpolation=cv2.INTER_LINEAR)
            img2 = cv2.resize(img2, None, fx=scale_x, fy=scale_y, interpolation=cv2.INTER_LINEAR)
            flow = self._resize_flow(flow, scale_x, scale_y, factor=2.0 if dname=='Spring' else 1.0)
        elif dname=="Spring":
            flow = self._resize_flow(flow, 1.0, 1.0, factor=2.0)

        if self.h_flip_prob>0. and np.random.rand() < self.h_flip_prob:  # h-flip
            img1 = img1[:, ::-1]
            img2 = img2[:, ::-1]
            flow = flow[:, ::-1] * [-1.0, 1.0]

        if self.v_flip_prob>0. and np.random.rand() < self.v_flip_prob:  # v-flip
            img1 = img1[::-1, :]
            img2 = img2[::-1, :]
            flow = flow[::-1, :] * [1.0, -1.0]
                
        # In case no cropping
        if img1.shape[0] - self.crop_size[0] > 0:
            y0 = np.random.randint(0, img1.shape[0] - self.crop_size[0])
        else:
            y0 = 0
        if img1.shape[1] - self.crop_size[1] > 0:
            x0 = np.random.randint(0, img1.shape[1] - self.crop_size[1])
        else:
            x0 = 0

        img1 = img1[y0:y0 + self.crop_size[0], x0:x0 + self.crop_size[1]]
        img2 = img2[y0:y0 + self.crop_size[0], x0:x0 + self.crop_size[1]]
        flow = flow[y0:y0 + self.crop_size[0], x0:x0 + self.crop_size[1]]

        return img1, img2, flow

    def __call__(self, img1, img2, flow, dname):
        img1, img2, flow = self.spatial_transform(img1, img2, flow, dname)
        img1, img2 = self.color_transform(img1, img2)
        img1 = np.ascontiguousarray(img1)
        img2 = np.ascontiguousarray(img2)
        flow = np.ascontiguousarray(flow)
        return img1, img2, flow