Spaces:
Running
on
Zero
Running
on
Zero
File size: 13,252 Bytes
df13f4b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 |
# Copyright (C) 2022-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
# --------------------------------------------------------
# Data augmentation for training stereo and flow
# --------------------------------------------------------
# References
# https://github.com/autonomousvision/unimatch/blob/master/dataloader/stereo/transforms.py
# https://github.com/autonomousvision/unimatch/blob/master/dataloader/flow/transforms.py
import numpy as np
import random
from PIL import Image
import cv2
cv2.setNumThreads(0)
cv2.ocl.setUseOpenCL(False)
import torch
from torchvision.transforms import ColorJitter
import torchvision.transforms.functional as FF
class StereoAugmentor(object):
def __init__(self, crop_size, scale_prob=0.5, scale_xonly=True, lhth=800., lminscale=0.0, lmaxscale=1.0, hminscale=-0.2, hmaxscale=0.4, scale_interp_nearest=True, rightjitterprob=0.5, v_flip_prob=0.5, color_aug_asym=True, color_choice_prob=0.5):
self.crop_size = crop_size
self.scale_prob = scale_prob
self.scale_xonly = scale_xonly
self.lhth = lhth
self.lminscale = lminscale
self.lmaxscale = lmaxscale
self.hminscale = hminscale
self.hmaxscale = hmaxscale
self.scale_interp_nearest = scale_interp_nearest
self.rightjitterprob = rightjitterprob
self.v_flip_prob = v_flip_prob
self.color_aug_asym = color_aug_asym
self.color_choice_prob = color_choice_prob
def _random_scale(self, img1, img2, disp):
ch,cw = self.crop_size
h,w = img1.shape[:2]
if self.scale_prob>0. and np.random.rand()<self.scale_prob:
min_scale, max_scale = (self.lminscale,self.lmaxscale) if min(h,w) < self.lhth else (self.hminscale,self.hmaxscale)
scale_x = 2. ** np.random.uniform(min_scale, max_scale)
scale_x = np.clip(scale_x, (cw+8) / float(w), None)
scale_y = 1.
if not self.scale_xonly:
scale_y = scale_x
scale_y = np.clip(scale_y, (ch+8) / float(h), None)
img1 = cv2.resize(img1, None, fx=scale_x, fy=scale_y, interpolation=cv2.INTER_LINEAR)
img2 = cv2.resize(img2, None, fx=scale_x, fy=scale_y, interpolation=cv2.INTER_LINEAR)
disp = cv2.resize(disp, None, fx=scale_x, fy=scale_y, interpolation=cv2.INTER_LINEAR if not self.scale_interp_nearest else cv2.INTER_NEAREST) * scale_x
else: # check if we need to resize to be able to crop
h,w = img1.shape[:2]
clip_scale = (cw+8) / float(w)
if clip_scale>1.:
scale_x = clip_scale
scale_y = scale_x if not self.scale_xonly else 1.0
img1 = cv2.resize(img1, None, fx=scale_x, fy=scale_y, interpolation=cv2.INTER_LINEAR)
img2 = cv2.resize(img2, None, fx=scale_x, fy=scale_y, interpolation=cv2.INTER_LINEAR)
disp = cv2.resize(disp, None, fx=scale_x, fy=scale_y, interpolation=cv2.INTER_LINEAR if not self.scale_interp_nearest else cv2.INTER_NEAREST) * scale_x
return img1, img2, disp
def _random_crop(self, img1, img2, disp):
h,w = img1.shape[:2]
ch,cw = self.crop_size
assert ch<=h and cw<=w, (img1.shape, h,w,ch,cw)
offset_x = np.random.randint(w - cw + 1)
offset_y = np.random.randint(h - ch + 1)
img1 = img1[offset_y:offset_y+ch,offset_x:offset_x+cw]
img2 = img2[offset_y:offset_y+ch,offset_x:offset_x+cw]
disp = disp[offset_y:offset_y+ch,offset_x:offset_x+cw]
return img1, img2, disp
def _random_vflip(self, img1, img2, disp):
# vertical flip
if self.v_flip_prob>0 and np.random.rand() < self.v_flip_prob:
img1 = np.copy(np.flipud(img1))
img2 = np.copy(np.flipud(img2))
disp = np.copy(np.flipud(disp))
return img1, img2, disp
def _random_rotate_shift_right(self, img2):
if self.rightjitterprob>0. and np.random.rand()<self.rightjitterprob:
angle, pixel = 0.1, 2
px = np.random.uniform(-pixel, pixel)
ag = np.random.uniform(-angle, angle)
image_center = (np.random.uniform(0, img2.shape[0]), np.random.uniform(0, img2.shape[1]) )
rot_mat = cv2.getRotationMatrix2D(image_center, ag, 1.0)
img2 = cv2.warpAffine(img2, rot_mat, img2.shape[1::-1], flags=cv2.INTER_LINEAR)
trans_mat = np.float32([[1, 0, 0], [0, 1, px]])
img2 = cv2.warpAffine(img2, trans_mat, img2.shape[1::-1], flags=cv2.INTER_LINEAR)
return img2
def _random_color_contrast(self, img1, img2):
if np.random.random() < 0.5:
contrast_factor = np.random.uniform(0.8, 1.2)
img1 = FF.adjust_contrast(img1, contrast_factor)
if self.color_aug_asym and np.random.random() < 0.5: contrast_factor = np.random.uniform(0.8, 1.2)
img2 = FF.adjust_contrast(img2, contrast_factor)
return img1, img2
def _random_color_gamma(self, img1, img2):
if np.random.random() < 0.5:
gamma = np.random.uniform(0.7, 1.5)
img1 = FF.adjust_gamma(img1, gamma)
if self.color_aug_asym and np.random.random() < 0.5: gamma = np.random.uniform(0.7, 1.5)
img2 = FF.adjust_gamma(img2, gamma)
return img1, img2
def _random_color_brightness(self, img1, img2):
if np.random.random() < 0.5:
brightness = np.random.uniform(0.5, 2.0)
img1 = FF.adjust_brightness(img1, brightness)
if self.color_aug_asym and np.random.random() < 0.5: brightness = np.random.uniform(0.5, 2.0)
img2 = FF.adjust_brightness(img2, brightness)
return img1, img2
def _random_color_hue(self, img1, img2):
if np.random.random() < 0.5:
hue = np.random.uniform(-0.1, 0.1)
img1 = FF.adjust_hue(img1, hue)
if self.color_aug_asym and np.random.random() < 0.5: hue = np.random.uniform(-0.1, 0.1)
img2 = FF.adjust_hue(img2, hue)
return img1, img2
def _random_color_saturation(self, img1, img2):
if np.random.random() < 0.5:
saturation = np.random.uniform(0.8, 1.2)
img1 = FF.adjust_saturation(img1, saturation)
if self.color_aug_asym and np.random.random() < 0.5: saturation = np.random.uniform(-0.8,1.2)
img2 = FF.adjust_saturation(img2, saturation)
return img1, img2
def _random_color(self, img1, img2):
trfs = [self._random_color_contrast,self._random_color_gamma,self._random_color_brightness,self._random_color_hue,self._random_color_saturation]
img1 = Image.fromarray(img1.astype('uint8'))
img2 = Image.fromarray(img2.astype('uint8'))
if np.random.random() < self.color_choice_prob:
# A single transform
t = random.choice(trfs)
img1, img2 = t(img1, img2)
else:
# Combination of trfs
# Random order
random.shuffle(trfs)
for t in trfs:
img1, img2 = t(img1, img2)
img1 = np.array(img1).astype(np.float32)
img2 = np.array(img2).astype(np.float32)
return img1, img2
def __call__(self, img1, img2, disp, dataset_name):
img1, img2, disp = self._random_scale(img1, img2, disp)
img1, img2, disp = self._random_crop(img1, img2, disp)
img1, img2, disp = self._random_vflip(img1, img2, disp)
img2 = self._random_rotate_shift_right(img2)
img1, img2 = self._random_color(img1, img2)
return img1, img2, disp
class FlowAugmentor:
def __init__(self, crop_size, min_scale=-0.2, max_scale=0.5, spatial_aug_prob=0.8, stretch_prob=0.8, max_stretch=0.2, h_flip_prob=0.5, v_flip_prob=0.1, asymmetric_color_aug_prob=0.2):
# spatial augmentation params
self.crop_size = crop_size
self.min_scale = min_scale
self.max_scale = max_scale
self.spatial_aug_prob = spatial_aug_prob
self.stretch_prob = stretch_prob
self.max_stretch = max_stretch
# flip augmentation params
self.h_flip_prob = h_flip_prob
self.v_flip_prob = v_flip_prob
# photometric augmentation params
self.photo_aug = ColorJitter(brightness=0.4, contrast=0.4, saturation=0.4, hue=0.5 / 3.14)
self.asymmetric_color_aug_prob = asymmetric_color_aug_prob
def color_transform(self, img1, img2):
""" Photometric augmentation """
# asymmetric
if np.random.rand() < self.asymmetric_color_aug_prob:
img1 = np.array(self.photo_aug(Image.fromarray(img1)), dtype=np.uint8)
img2 = np.array(self.photo_aug(Image.fromarray(img2)), dtype=np.uint8)
# symmetric
else:
image_stack = np.concatenate([img1, img2], axis=0)
image_stack = np.array(self.photo_aug(Image.fromarray(image_stack)), dtype=np.uint8)
img1, img2 = np.split(image_stack, 2, axis=0)
return img1, img2
def _resize_flow(self, flow, scale_x, scale_y, factor=1.0):
if np.all(np.isfinite(flow)):
flow = cv2.resize(flow, None, fx=scale_x/factor, fy=scale_y/factor, interpolation=cv2.INTER_LINEAR)
flow = flow * [scale_x, scale_y]
else: # sparse version
fx, fy = scale_x, scale_y
ht, wd = flow.shape[:2]
coords = np.meshgrid(np.arange(wd), np.arange(ht))
coords = np.stack(coords, axis=-1)
coords = coords.reshape(-1, 2).astype(np.float32)
flow = flow.reshape(-1, 2).astype(np.float32)
valid = np.isfinite(flow[:,0])
coords0 = coords[valid]
flow0 = flow[valid]
ht1 = int(round(ht * fy/factor))
wd1 = int(round(wd * fx/factor))
rescale = np.expand_dims(np.array([fx, fy]), axis=0)
coords1 = coords0 * rescale / factor
flow1 = flow0 * rescale
xx = np.round(coords1[:, 0]).astype(np.int32)
yy = np.round(coords1[:, 1]).astype(np.int32)
v = (xx > 0) & (xx < wd1) & (yy > 0) & (yy < ht1)
xx = xx[v]
yy = yy[v]
flow1 = flow1[v]
flow = np.inf * np.ones([ht1, wd1, 2], dtype=np.float32) # invalid value every where, before we fill it with the correct ones
flow[yy, xx] = flow1
return flow
def spatial_transform(self, img1, img2, flow, dname):
if np.random.rand() < self.spatial_aug_prob:
# randomly sample scale
ht, wd = img1.shape[:2]
clip_min_scale = np.maximum(
(self.crop_size[0] + 8) / float(ht),
(self.crop_size[1] + 8) / float(wd))
min_scale, max_scale = self.min_scale, self.max_scale
scale = 2 ** np.random.uniform(self.min_scale, self.max_scale)
scale_x = scale
scale_y = scale
if np.random.rand() < self.stretch_prob:
scale_x *= 2 ** np.random.uniform(-self.max_stretch, self.max_stretch)
scale_y *= 2 ** np.random.uniform(-self.max_stretch, self.max_stretch)
scale_x = np.clip(scale_x, clip_min_scale, None)
scale_y = np.clip(scale_y, clip_min_scale, None)
# rescale the images
img1 = cv2.resize(img1, None, fx=scale_x, fy=scale_y, interpolation=cv2.INTER_LINEAR)
img2 = cv2.resize(img2, None, fx=scale_x, fy=scale_y, interpolation=cv2.INTER_LINEAR)
flow = self._resize_flow(flow, scale_x, scale_y, factor=2.0 if dname=='Spring' else 1.0)
elif dname=="Spring":
flow = self._resize_flow(flow, 1.0, 1.0, factor=2.0)
if self.h_flip_prob>0. and np.random.rand() < self.h_flip_prob: # h-flip
img1 = img1[:, ::-1]
img2 = img2[:, ::-1]
flow = flow[:, ::-1] * [-1.0, 1.0]
if self.v_flip_prob>0. and np.random.rand() < self.v_flip_prob: # v-flip
img1 = img1[::-1, :]
img2 = img2[::-1, :]
flow = flow[::-1, :] * [1.0, -1.0]
# In case no cropping
if img1.shape[0] - self.crop_size[0] > 0:
y0 = np.random.randint(0, img1.shape[0] - self.crop_size[0])
else:
y0 = 0
if img1.shape[1] - self.crop_size[1] > 0:
x0 = np.random.randint(0, img1.shape[1] - self.crop_size[1])
else:
x0 = 0
img1 = img1[y0:y0 + self.crop_size[0], x0:x0 + self.crop_size[1]]
img2 = img2[y0:y0 + self.crop_size[0], x0:x0 + self.crop_size[1]]
flow = flow[y0:y0 + self.crop_size[0], x0:x0 + self.crop_size[1]]
return img1, img2, flow
def __call__(self, img1, img2, flow, dname):
img1, img2, flow = self.spatial_transform(img1, img2, flow, dname)
img1, img2 = self.color_transform(img1, img2)
img1 = np.ascontiguousarray(img1)
img2 = np.ascontiguousarray(img2)
flow = np.ascontiguousarray(flow)
return img1, img2, flow |