Spaces:
Running
on
Zero
Running
on
Zero
update
Browse files- app.py +1 -1
- app_new.py +145 -0
app.py
CHANGED
@@ -7,7 +7,7 @@ import spaces
|
|
7 |
# os.system("pip install -v -v -v 'git+https://github.com/facebookresearch/pytorch3d.git@stable'")
|
8 |
# os.system("cd pytorch3d && pip install -e . && cd ..")
|
9 |
# os.system("pip install 'git+https://github.com/facebookresearch/pytorch3d.git'")
|
10 |
-
|
11 |
|
12 |
import gradio as gr
|
13 |
import random
|
|
|
7 |
# os.system("pip install -v -v -v 'git+https://github.com/facebookresearch/pytorch3d.git@stable'")
|
8 |
# os.system("cd pytorch3d && pip install -e . && cd ..")
|
9 |
# os.system("pip install 'git+https://github.com/facebookresearch/pytorch3d.git'")
|
10 |
+
os.system("mkdir -p checkpoints/ && wget https://download.europe.naverlabs.com/ComputerVision/DUSt3R/DUSt3R_ViTLarge_BaseDecoder_512_dpt.pth -P checkpoints/")
|
11 |
|
12 |
import gradio as gr
|
13 |
import random
|
app_new.py
ADDED
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import sys
|
4 |
+
import gradio as gr
|
5 |
+
import random
|
6 |
+
from configs.infer_config import get_parser
|
7 |
+
from huggingface_hub import hf_hub_download
|
8 |
+
sys.path.append('./extern/dust3r')
|
9 |
+
from dust3r.inference import inference, load_model
|
10 |
+
from omegaconf import OmegaConf
|
11 |
+
from pytorch_lightning import seed_everything
|
12 |
+
from utils.diffusion_utils import instantiate_from_config,load_model_checkpoint,image_guided_synthesis
|
13 |
+
|
14 |
+
|
15 |
+
i2v_examples = [
|
16 |
+
['test/images/boy.png', 0, 1.0, '0 40', '0 0', '0 0', 50, 123],
|
17 |
+
['test/images/car.jpeg', 0, 1.0, '0 -35', '0 0', '0 -0.1', 50, 123],
|
18 |
+
['test/images/fruit.jpg', 0, 1.0, '0 -3 -15 -20 -17 -5 0', '0 -2 -5 -10 -8 -5 0 2 5 3 0', '0 0', 50, 123],
|
19 |
+
['test/images/room.png', 5, 1.0, '0 3 10 20 17 10 0', '0 -2 -8 -6 0 2 5 3 0', '0 -0.02 -0.09 -0.16 -0.09 0', 50, 123],
|
20 |
+
['test/images/castle.png', 0, 1.0, '0 30', '0 -1 -5 -4 0 1 5 4 0', '0 -0.2', 50, 123],
|
21 |
+
]
|
22 |
+
|
23 |
+
max_seed = 2 ** 31
|
24 |
+
|
25 |
+
def download_model():
|
26 |
+
REPO_ID = 'Drexubery/ViewCrafter_25'
|
27 |
+
filename_list = ['model.ckpt']
|
28 |
+
for filename in filename_list:
|
29 |
+
local_file = os.path.join('./checkpoints/', filename)
|
30 |
+
if not os.path.exists(local_file):
|
31 |
+
hf_hub_download(repo_id=REPO_ID, filename=filename, local_dir='./checkpoints/', force_download=True)
|
32 |
+
|
33 |
+
download_model()
|
34 |
+
|
35 |
+
|
36 |
+
css = """#input_img {max-width: 1024px !important} #output_vid {max-width: 1024px; max-height:576px} #random_button {max-width: 100px !important}"""
|
37 |
+
parser = get_parser() # infer_config.py
|
38 |
+
opts = parser.parse_args() # default device: 'cuda:0'
|
39 |
+
opts.save_dir = './'
|
40 |
+
os.makedirs(opts.save_dir,exist_ok=True)
|
41 |
+
test_tensor = torch.Tensor([0]).cuda()
|
42 |
+
opts.device = str(test_tensor.device)
|
43 |
+
|
44 |
+
dust3r = load_model(opts.model_path, opts.device)
|
45 |
+
config = OmegaConf.load(opts.config)
|
46 |
+
model_config = config.pop("model", OmegaConf.create())
|
47 |
+
model_config['params']['unet_config']['params']['use_checkpoint'] = False
|
48 |
+
model = instantiate_from_config(model_config)
|
49 |
+
model = model.to(opts.device)
|
50 |
+
model.cond_stage_model.device = opts.device
|
51 |
+
model.perframe_ae = opts.perframe_ae
|
52 |
+
assert os.path.exists(opts.ckpt_path), "Error: checkpoint Not Found!"
|
53 |
+
model = load_model_checkpoint(model, opts.ckpt_path)
|
54 |
+
model.eval()
|
55 |
+
diffusion = model
|
56 |
+
transform = transforms.Compose([
|
57 |
+
transforms.Resize(576),
|
58 |
+
transforms.CenterCrop((576,1024)),
|
59 |
+
])
|
60 |
+
|
61 |
+
def infer(opts,i2v_input_image, i2v_elevation, i2v_center_scale, i2v_d_phi, i2v_d_theta, i2v_d_r, i2v_steps, i2v_seed):
|
62 |
+
elevation = float(i2v_elevation)
|
63 |
+
center_scale = float(i2v_center_scale)
|
64 |
+
ddim_steps = i2v_steps
|
65 |
+
gradio_traj = [float(i) for i in i2v_d_phi.split()],[float(i) for i in i2v_d_theta.split()],[float(i) for i in i2v_d_r.split()]
|
66 |
+
seed_everything(i2v_seed)
|
67 |
+
|
68 |
+
torch.cuda.empty_cache()
|
69 |
+
img_tensor = torch.from_numpy(i2v_input_image).permute(2, 0, 1).unsqueeze(0).float().to(self.device)
|
70 |
+
img_tensor = (img_tensor / 255. - 0.5) * 2
|
71 |
+
image_tensor_resized = transform(img_tensor) #1,3,h,w
|
72 |
+
images = get_input_dict(image_tensor_resized,idx = 0,dtype = torch.float32)
|
73 |
+
images = [images, copy.deepcopy(images)]
|
74 |
+
images[1]['idx'] = 1
|
75 |
+
se_images = images
|
76 |
+
se_img_ori = (image_tensor_resized.squeeze(0).permute(1,2,0) + 1.)/2.
|
77 |
+
|
78 |
+
run_dust3r(input_images=self.images)
|
79 |
+
nvs_single_view(gradio=True)
|
80 |
+
|
81 |
+
traj_dir = os.path.join(self.opts.save_dir, "viz_traj.mp4")
|
82 |
+
gen_dir = os.path.join(self.opts.save_dir, "diffusion0.mp4")
|
83 |
+
return i2v_traj_path,i2v_output_path
|
84 |
+
|
85 |
+
with gr.Blocks(analytics_enabled=False, css=css) as viewcrafter_iface:
|
86 |
+
gr.Markdown("<div align='center'> <h1> ViewCrafter: Taming Video Diffusion Models for High-fidelity Novel View Synthesis </span> </h1> \
|
87 |
+
<h2 style='font-weight: 450; font-size: 1rem; margin: 0rem'>\
|
88 |
+
<a href='https://scholar.google.com/citations?user=UOE8-qsAAAAJ&hl=zh-CN'>Wangbo Yu</a>, \
|
89 |
+
<a href='https://doubiiu.github.io/'>Jinbo Xing</a>, <a href=''>Li Yuan</a>, \
|
90 |
+
<a href='https://wbhu.github.io/'>Wenbo Hu</a>, <a href='https://xiaoyu258.github.io/'>Xiaoyu Li</a>,\
|
91 |
+
<a href=''>Zhipeng Huang</a>, <a href='https://scholar.google.com/citations?user=qgdesEcAAAAJ&hl=en/'>Xiangjun Gao</a>,\
|
92 |
+
<a href='https://www.cse.cuhk.edu.hk/~ttwong/myself.html/'>Tien-Tsin Wong</a>,\
|
93 |
+
<a href='https://scholar.google.com/citations?hl=en&user=4oXBp9UAAAAJ&view_op=list_works&sortby=pubdate/'>Ying Shan</a>\
|
94 |
+
<a href=''>Yonghong Tian</a>\
|
95 |
+
</h2> \
|
96 |
+
<a style='font-size:18px;color: #FF5DB0' href='https://github.com/Drexubery/ViewCrafter/blob/main/docs/render_help.md'> [Guideline] </a>\
|
97 |
+
<a style='font-size:18px;color: #000000' href=''> [ArXiv] </a>\
|
98 |
+
<a style='font-size:18px;color: #000000' href='https://drexubery.github.io/ViewCrafter/'> [Project Page] </a>\
|
99 |
+
<a style='font-size:18px;color: #000000' href='https://github.com/Drexubery/ViewCrafter'> [Github] </a> </div>")
|
100 |
+
|
101 |
+
#######image2video######
|
102 |
+
with gr.Tab(label="ViewCrafter_25, 'single_view_txt' mode"):
|
103 |
+
with gr.Column():
|
104 |
+
with gr.Row():
|
105 |
+
with gr.Column():
|
106 |
+
with gr.Row():
|
107 |
+
i2v_input_image = gr.Image(label="Input Image",elem_id="input_img")
|
108 |
+
with gr.Row():
|
109 |
+
i2v_elevation = gr.Slider(minimum=-45, maximum=45, step=1, elem_id="elevation", label="elevation", value=5)
|
110 |
+
with gr.Row():
|
111 |
+
i2v_center_scale = gr.Slider(minimum=0.1, maximum=2, step=0.1, elem_id="i2v_center_scale", label="center_scale", value=1)
|
112 |
+
with gr.Row():
|
113 |
+
i2v_d_phi = gr.Text(label='d_phi sequence, should start with 0')
|
114 |
+
with gr.Row():
|
115 |
+
i2v_d_theta = gr.Text(label='d_theta sequence, should start with 0')
|
116 |
+
with gr.Row():
|
117 |
+
i2v_d_r = gr.Text(label='d_r sequence, should start with 0')
|
118 |
+
with gr.Row():
|
119 |
+
i2v_steps = gr.Slider(minimum=1, maximum=50, step=1, elem_id="i2v_steps", label="Sampling steps", value=50)
|
120 |
+
with gr.Row():
|
121 |
+
i2v_seed = gr.Slider(label='Random Seed', minimum=0, maximum=max_seed, step=1, value=123)
|
122 |
+
i2v_end_btn = gr.Button("Generate")
|
123 |
+
# with gr.Tab(label='Result'):
|
124 |
+
with gr.Column():
|
125 |
+
with gr.Row():
|
126 |
+
i2v_traj_video = gr.Video(label="Camera Trajectory",elem_id="traj_vid",autoplay=True,show_share_button=True)
|
127 |
+
with gr.Row():
|
128 |
+
i2v_output_video = gr.Video(label="Generated Video",elem_id="output_vid",autoplay=True,show_share_button=True)
|
129 |
+
|
130 |
+
gr.Examples(examples=i2v_examples,
|
131 |
+
inputs=[opts,i2v_input_image, i2v_elevation, i2v_center_scale, i2v_d_phi, i2v_d_theta, i2v_d_r, i2v_steps, i2v_seed],
|
132 |
+
outputs=[i2v_traj_video,i2v_output_video],
|
133 |
+
fn = infer,
|
134 |
+
cache_examples=False,
|
135 |
+
)
|
136 |
+
|
137 |
+
# image2video.run_gradio(i2v_input_image='test/images/boy.png', i2v_elevation='10', i2v_d_phi='0 40', i2v_d_theta='0 0', i2v_d_r='0 0', i2v_center_scale=1, i2v_steps=50, i2v_seed=123)
|
138 |
+
i2v_end_btn.click(inputs=[opts,i2v_input_image, i2v_elevation, i2v_center_scale, i2v_d_phi, i2v_d_theta, i2v_d_r, i2v_steps, i2v_seed],
|
139 |
+
outputs=[i2v_traj_video,i2v_output_video],
|
140 |
+
fn = infer
|
141 |
+
)
|
142 |
+
|
143 |
+
viewcrafter_iface.queue(max_size=12).launch(show_api=True)
|
144 |
+
|
145 |
+
|