import sys sys.path.append('./extern/dust3r') from dust3r.inference import inference, load_model from dust3r.utils.image import load_images from dust3r.image_pairs import make_pairs from dust3r.cloud_opt import global_aligner, GlobalAlignerMode from dust3r.utils.device import to_numpy import trimesh import torch import numpy as np import torchvision import os import copy import cv2 from PIL import Image import pytorch3d from pytorch3d.structures import Pointclouds from torchvision.utils import save_image import torch.nn.functional as F import torchvision.transforms as transforms from PIL import Image from utils.pvd_utils import * from omegaconf import OmegaConf from pytorch_lightning import seed_everything from utils.diffusion_utils import instantiate_from_config,load_model_checkpoint,image_guided_synthesis from pathlib import Path from torchvision.utils import save_image import spaces class ViewCrafter: def __init__(self, opts, gradio = False): self.opts = opts self.device = opts.device self.setup_dust3r() # self.setup_diffusion() # initialize ref images, pcd if not gradio: self.images, self.img_ori = self.load_initial_images(image_dir=self.opts.image_dir) self.run_dust3r(input_images=self.images) def run_dust3r(self, input_images,clean_pc = False): pairs = make_pairs(input_images, scene_graph='complete', prefilter=None, symmetrize=True) output = inference(pairs, self.dust3r, self.device, batch_size=self.opts.batch_size) mode = GlobalAlignerMode.PointCloudOptimizer #if len(self.images) > 2 else GlobalAlignerMode.PairViewer scene = global_aligner(output, device=self.device, mode=mode) if mode == GlobalAlignerMode.PointCloudOptimizer: loss = scene.compute_global_alignment(init='mst', niter=self.opts.niter, schedule=self.opts.schedule, lr=self.opts.lr) if clean_pc: self.scene = scene.clean_pointcloud() else: self.scene = scene def render_pcd(self,pts3d,imgs,masks,views,renderer,device): imgs = to_numpy(imgs) pts3d = to_numpy(pts3d) if masks == None: pts = torch.from_numpy(np.concatenate([p for p in pts3d])).view(-1, 3).to(device) col = torch.from_numpy(np.concatenate([p for p in imgs])).view(-1, 3).to(device) else: # masks = to_numpy(masks) pts = torch.from_numpy(np.concatenate([p[m] for p, m in zip(pts3d, masks)])).to(device) col = torch.from_numpy(np.concatenate([p[m] for p, m in zip(imgs, masks)])).to(device) color_mask = torch.ones(col.shape).to(device) point_cloud_mask = Pointclouds(points=[pts],features=[color_mask]).extend(views) point_cloud = Pointclouds(points=[pts], features=[col]).extend(views) images = renderer(point_cloud) view_masks = renderer(point_cloud_mask) return images, view_masks def run_render(self, pcd, imgs,masks, H, W, camera_traj,num_views): render_setup = setup_renderer(camera_traj, image_size=(H,W)) renderer = render_setup['renderer'] render_results, viewmask = self.render_pcd(pcd, imgs, masks, num_views,renderer,self.device) return render_results, viewmask def run_diffusion(self, renderings): prompts = [self.opts.prompt] videos = (renderings * 2. - 1.).permute(3,0,1,2).unsqueeze(0).to(self.device) condition_index = [0] with torch.no_grad(), torch.cuda.amp.autocast(): # [1,1,c,t,h,w] batch_samples = image_guided_synthesis(self.diffusion, prompts, videos, self.noise_shape, self.opts.n_samples, self.opts.ddim_steps, self.opts.ddim_eta, \ self.opts.unconditional_guidance_scale, self.opts.cfg_img, self.opts.frame_stride, self.opts.text_input, self.opts.multiple_cond_cfg, self.opts.timestep_spacing, self.opts.guidance_rescale, condition_index) # save_results_seperate(batch_samples[0], self.opts.save_dir, fps=8) # torch.Size([1, 3, 25, 576, 1024]) [-1,1] return torch.clamp(batch_samples[0][0].permute(1,2,3,0), -1., 1.) def nvs_single_view(self, gradio=False): # 最后一个view为 0 pose c2ws = self.scene.get_im_poses().detach()[1:] principal_points = self.scene.get_principal_points().detach()[1:] #cx cy focals = self.scene.get_focals().detach()[1:] shape = self.images[0]['true_shape'] H, W = int(shape[0][0]), int(shape[0][1]) pcd = [i.detach() for i in self.scene.get_pts3d(clip_thred=self.opts.dpt_trd)] # a list of points of size whc depth = [i.detach() for i in self.scene.get_depthmaps()] depth_avg = depth[-1][H//2,W//2] #以图像中心处的depth(z)为球心旋转 radius = depth_avg*self.opts.center_scale #缩放调整 ## change coordinate c2ws,pcd = world_point_to_obj(poses=c2ws, points=torch.stack(pcd), k=-1, r=radius, elevation=self.opts.elevation, device=self.device) imgs = np.array(self.scene.imgs) masks = None if self.opts.mode == 'single_view_nbv': ## 输入candidate->渲染mask->最大mask对应的pose作为nbv ## nbv模式下self.opts.d_theta[0], self.opts.d_phi[0]代表search space中的网格theta, phi之间的间距; self.opts.d_phi[0]的符号代表方向,分为左右两个方向 ## FIXME hard coded candidate view数量, 以left为例,第一次迭代从[左,左上]中选取, 从第二次开始可以从[左,左上,左下]中选取 num_candidates = 2 candidate_poses,thetas,phis = generate_candidate_poses(c2ws, H, W, focals, principal_points, self.opts.d_theta[0], self.opts.d_phi[0],num_candidates, self.device) _, viewmask = self.run_render([pcd[-1]], [imgs[-1]],masks, H, W, candidate_poses,num_candidates) nbv_id = torch.argmin(viewmask.sum(dim=[1,2,3])).item() save_image( viewmask.permute(0,3,1,2), os.path.join(self.opts.save_dir,f"candidate_mask0_nbv{nbv_id}.png"), normalize=True, value_range=(0, 1)) theta_nbv = thetas[nbv_id] phi_nbv = phis[nbv_id] # generate camera trajectory from T_curr to T_nbv camera_traj,num_views = generate_traj_specified(c2ws, H, W, focals, principal_points, theta_nbv, phi_nbv, self.opts.d_r[0],self.opts.video_length, self.device) # 重置elevation self.opts.elevation -= theta_nbv elif self.opts.mode == 'single_view_target': camera_traj,num_views = generate_traj_specified(c2ws, H, W, focals, principal_points, self.opts.d_theta[0], self.opts.d_phi[0], self.opts.d_r[0],self.opts.video_length, self.device) elif self.opts.mode == 'single_view_txt': if not gradio: with open(self.opts.traj_txt, 'r') as file: lines = file.readlines() phi = [float(i) for i in lines[0].split()] theta = [float(i) for i in lines[1].split()] r = [float(i) for i in lines[2].split()] else: phi, theta, r = self.gradio_traj camera_traj,num_views = generate_traj_txt(c2ws, H, W, focals, principal_points, phi, theta, r,self.opts.video_length, self.device,viz_traj=True, save_dir = self.opts.save_dir) else: raise KeyError(f"Invalid Mode: {self.opts.mode}") render_results, viewmask = self.run_render([pcd[-1]], [imgs[-1]],masks, H, W, camera_traj,num_views) render_results = F.interpolate(render_results.permute(0,3,1,2), size=(576, 1024), mode='bilinear', align_corners=False).permute(0,2,3,1) render_results[0] = self.img_ori if self.opts.mode == 'single_view_txt': if phi[-1]==0. and theta[-1]==0. and r[-1]==0.: render_results[-1] = self.img_ori save_video(render_results, os.path.join(self.opts.save_dir, 'render0.mp4')) save_pointcloud_with_normals([imgs[-1]], [pcd[-1]], msk=None, save_path=os.path.join(self.opts.save_dir,'pcd0.ply') , mask_pc=False, reduce_pc=False) diffusion_results = self.run_diffusion(render_results) save_video((diffusion_results + 1.0) / 2.0, os.path.join(self.opts.save_dir, 'diffusion0.mp4')) return diffusion_results def nvs_sparse_view(self,iter): c2ws = self.scene.get_im_poses().detach() principal_points = self.scene.get_principal_points().detach() focals = self.scene.get_focals().detach() shape = self.images[0]['true_shape'] H, W = int(shape[0][0]), int(shape[0][1]) pcd = [i.detach() for i in self.scene.get_pts3d(clip_thred=self.opts.dpt_trd)] # a list of points of size whc depth = [i.detach() for i in self.scene.get_depthmaps()] depth_avg = depth[0][H//2,W//2] #以ref图像中心处的depth(z)为球心旋转 radius = depth_avg*self.opts.center_scale #缩放调整 ## masks for cleaner point cloud self.scene.min_conf_thr = float(self.scene.conf_trf(torch.tensor(self.opts.min_conf_thr))) masks = self.scene.get_masks() depth = self.scene.get_depthmaps() bgs_mask = [dpt > self.opts.bg_trd*(torch.max(dpt[40:-40,:])+torch.min(dpt[40:-40,:])) for dpt in depth] masks_new = [m+mb for m, mb in zip(masks,bgs_mask)] masks = to_numpy(masks_new) ## render, 从c2ws[0]即ref image对应的相机开始 imgs = np.array(self.scene.imgs) if self.opts.mode == 'single_view_ref_iterative': c2ws,pcd = world_point_to_obj(poses=c2ws, points=torch.stack(pcd), k=0, r=radius, elevation=self.opts.elevation, device=self.device) camera_traj,num_views = generate_traj_specified(c2ws[0:1], H, W, focals[0:1], principal_points[0:1], self.opts.d_theta[iter], self.opts.d_phi[iter], self.opts.d_r[iter],self.opts.video_length, self.device) render_results, viewmask = self.run_render(pcd, imgs,masks, H, W, camera_traj,num_views) render_results = F.interpolate(render_results.permute(0,3,1,2), size=(576, 1024), mode='bilinear', align_corners=False).permute(0,2,3,1) render_results[0] = self.img_ori elif self.opts.mode == 'single_view_1drc_iterative': self.opts.elevation -= self.opts.d_theta[iter-1] c2ws,pcd = world_point_to_obj(poses=c2ws, points=torch.stack(pcd), k=-1, r=radius, elevation=self.opts.elevation, device=self.device) camera_traj,num_views = generate_traj_specified(c2ws[-1:], H, W, focals[-1:], principal_points[-1:], self.opts.d_theta[iter], self.opts.d_phi[iter], self.opts.d_r[iter],self.opts.video_length, self.device) render_results, viewmask = self.run_render(pcd, imgs,masks, H, W, camera_traj,num_views) render_results = F.interpolate(render_results.permute(0,3,1,2), size=(576, 1024), mode='bilinear', align_corners=False).permute(0,2,3,1) render_results[0] = (self.images[-1]['img_ori'].squeeze(0).permute(1,2,0)+1.)/2. elif self.opts.mode == 'single_view_nbv': c2ws,pcd = world_point_to_obj(poses=c2ws, points=torch.stack(pcd), k=-1, r=radius, elevation=self.opts.elevation, device=self.device) ## 输入candidate->渲染mask->最大mask对应的pose作为nbv ## nbv模式下self.opts.d_theta[0], self.opts.d_phi[0]代表search space中的网格theta, phi之间的间距; self.opts.d_phi[0]的符号代表方向,分为左右两个方向 ## FIXME hard coded candidate view数量, 以left为例,第一次迭代从[左,左上]中选取, 从第二次开始可以从[左,左上,左下]中选取 num_candidates = 3 candidate_poses,thetas,phis = generate_candidate_poses(c2ws[-1:], H, W, focals[-1:], principal_points[-1:], self.opts.d_theta[0], self.opts.d_phi[0], num_candidates, self.device) _, viewmask = self.run_render(pcd, imgs,masks, H, W, candidate_poses,num_candidates) nbv_id = torch.argmin(viewmask.sum(dim=[1,2,3])).item() save_image(viewmask.permute(0,3,1,2), os.path.join(self.opts.save_dir,f"candidate_mask{iter}_nbv{nbv_id}.png"), normalize=True, value_range=(0, 1)) theta_nbv = thetas[nbv_id] phi_nbv = phis[nbv_id] # generate camera trajectory from T_curr to T_nbv camera_traj,num_views = generate_traj_specified(c2ws[-1:], H, W, focals[-1:], principal_points[-1:], theta_nbv, phi_nbv, self.opts.d_r[0],self.opts.video_length, self.device) # 重置elevation self.opts.elevation -= theta_nbv render_results, viewmask = self.run_render(pcd, imgs,masks, H, W, camera_traj,num_views) render_results = F.interpolate(render_results.permute(0,3,1,2), size=(576, 1024), mode='bilinear', align_corners=False).permute(0,2,3,1) render_results[0] = (self.images[-1]['img_ori'].squeeze(0).permute(1,2,0)+1.)/2. else: raise KeyError(f"Invalid Mode: {self.opts.mode}") save_video(render_results, os.path.join(self.opts.save_dir, f'render{iter}.mp4')) save_pointcloud_with_normals(imgs, pcd, msk=masks, save_path=os.path.join(self.opts.save_dir, f'pcd{iter}.ply') , mask_pc=True, reduce_pc=False) diffusion_results = self.run_diffusion(render_results) save_video((diffusion_results + 1.0) / 2.0, os.path.join(self.opts.save_dir, f'diffusion{iter}.mp4')) # torch.Size([25, 576, 1024, 3]) return diffusion_results def nvs_single_view_ref_iterative(self): all_results = [] sample_rate = 6 idx = 1 #初始包含1张ref image for itr in range(0, len(self.opts.d_phi)): if itr == 0: self.images = [self.images[0]] #去掉后一份copy diffusion_results_itr = self.nvs_single_view() # diffusion_results_itr = torch.randn([25, 576, 1024, 3]).to(self.device) diffusion_results_itr = diffusion_results_itr.permute(0,3,1,2) all_results.append(diffusion_results_itr) else: for i in range(0+sample_rate, diffusion_results_itr.shape[0], sample_rate): self.images.append(get_input_dict(diffusion_results_itr[i:i+1,...],idx,dtype = torch.float32)) idx += 1 self.run_dust3r(input_images=self.images, clean_pc=True) diffusion_results_itr = self.nvs_sparse_view(itr) # diffusion_results_itr = torch.randn([25, 576, 1024, 3]).to(self.device) diffusion_results_itr = diffusion_results_itr.permute(0,3,1,2) all_results.append(diffusion_results_itr) return all_results def nvs_single_view_1drc_iterative(self): all_results = [] sample_rate = 6 idx = 1 #初始包含1张ref image for itr in range(0, len(self.opts.d_phi)): if itr == 0: self.images = [self.images[0]] #去掉后一份copy diffusion_results_itr = self.nvs_single_view() # diffusion_results_itr = torch.randn([25, 576, 1024, 3]).to(self.device) diffusion_results_itr = diffusion_results_itr.permute(0,3,1,2) all_results.append(diffusion_results_itr) else: for i in range(0+sample_rate, diffusion_results_itr.shape[0], sample_rate): self.images.append(get_input_dict(diffusion_results_itr[i:i+1,...],idx,dtype = torch.float32)) idx += 1 self.run_dust3r(input_images=self.images, clean_pc=True) diffusion_results_itr = self.nvs_sparse_view(itr) # diffusion_results_itr = torch.randn([25, 576, 1024, 3]).to(self.device) diffusion_results_itr = diffusion_results_itr.permute(0,3,1,2) all_results.append(diffusion_results_itr) return all_results def nvs_single_view_nbv(self): # lef and right # d_theta and a_phi 是搜索空间的顶点间隔 all_results = [] ## FIXME: hard coded sample_rate = 6 max_itr = 3 idx = 1 #初始包含1张ref image for itr in range(0, max_itr): if itr == 0: self.images = [self.images[0]] #去掉后一份copy diffusion_results_itr = self.nvs_single_view() # diffusion_results_itr = torch.randn([25, 576, 1024, 3]).to(self.device) diffusion_results_itr = diffusion_results_itr.permute(0,3,1,2) all_results.append(diffusion_results_itr) else: for i in range(0+sample_rate, diffusion_results_itr.shape[0], sample_rate): self.images.append(get_input_dict(diffusion_results_itr[i:i+1,...],idx,dtype = torch.float32)) idx += 1 self.run_dust3r(input_images=self.images, clean_pc=True) diffusion_results_itr = self.nvs_sparse_view(itr) # diffusion_results_itr = torch.randn([25, 576, 1024, 3]).to(self.device) diffusion_results_itr = diffusion_results_itr.permute(0,3,1,2) all_results.append(diffusion_results_itr) return all_results def setup_diffusion(self): seed_everything(self.opts.seed) config = OmegaConf.load(self.opts.config) model_config = config.pop("model", OmegaConf.create()) ## set use_checkpoint as False as when using deepspeed, it encounters an error "deepspeed backend not set" model_config['params']['unet_config']['params']['use_checkpoint'] = False model = instantiate_from_config(model_config) model = model.to(self.device) model.cond_stage_model.device = self.device model.perframe_ae = self.opts.perframe_ae assert os.path.exists(self.opts.ckpt_path), "Error: checkpoint Not Found!" model = load_model_checkpoint(model, self.opts.ckpt_path) model.eval() self.diffusion = model h, w = self.opts.height // 8, self.opts.width // 8 channels = model.model.diffusion_model.out_channels n_frames = self.opts.video_length self.noise_shape = [self.opts.bs, channels, n_frames, h, w] def setup_dust3r(self): self.dust3r = load_model(self.opts.model_path, self.device) def load_initial_images(self, image_dir): ## load images ## dict_keys(['img', 'true_shape', 'idx', 'instance', 'img_ori']),张量形式 images = load_images([image_dir], size=512,force_1024 = True) img_ori = (images[0]['img_ori'].squeeze(0).permute(1,2,0)+1.)/2. # [576,1024,3] [0,1] # img_ori = Image.open(image_dir).convert('RGB') # transform = transforms.Compose([ # transforms.Resize((576, 1024)), # transforms.ToTensor(), # transforms.Normalize((0., 0., 0.), (1., 1., 1.)) # 归一化到[-1,1],如果要归一化到[0,1],请使用transforms.Normalize((0., 0., 0.), (1., 1., 1.)) # ]) # img_ori = transform(img_ori).permute(1,2,0).to(self.device) if len(images) == 1: images = [images[0], copy.deepcopy(images[0])] images[1]['idx'] = 1 return images, img_ori @spaces.GPU(duration=300) def run_gradio(self,i2v_input_image, i2v_elevation, i2v_center_scale, i2v_d_phi, i2v_d_theta, i2v_d_r, i2v_steps, i2v_seed): self.opts.elevation = float(i2v_elevation) self.opts.center_scale = float(i2v_center_scale) self.opts.ddim_steps = i2v_steps self.gradio_traj = [float(i) for i in i2v_d_phi.split()],[float(i) for i in i2v_d_theta.split()],[float(i) for i in i2v_d_r.split()] seed_everything(i2v_seed) transform = transforms.Compose([ transforms.Resize(576), transforms.CenterCrop((576,1024)), ]) torch.cuda.empty_cache() img_tensor = torch.from_numpy(i2v_input_image).permute(2, 0, 1).unsqueeze(0).float().to(self.device) img_tensor = (img_tensor / 255. - 0.5) * 2 image_tensor_resized = transform(img_tensor) #1,3,h,w images = get_input_dict(image_tensor_resized,idx = 0,dtype = torch.float32) images = [images, copy.deepcopy(images)] images[1]['idx'] = 1 self.images = images self.img_ori = (image_tensor_resized.squeeze(0).permute(1,2,0) + 1.)/2. # self.images: torch.Size([1, 3, 288, 512]), [-1,1] # self.img_ori: torch.Size([576, 1024, 3]), [0,1] # self.images, self.img_ori = self.load_initial_images(image_dir=i2v_input_image) self.run_dust3r(input_images=self.images) self.nvs_single_view(gradio=True) traj_dir = os.path.join(self.opts.save_dir, "viz_traj.mp4") gen_dir = os.path.join(self.opts.save_dir, "diffusion0.mp4") return traj_dir, gen_dir