Spaces:
Running
on
Zero
Running
on
Zero
import argparse, os, sys, datetime | |
from omegaconf import OmegaConf | |
from transformers import logging as transf_logging | |
import pytorch_lightning as pl | |
from pytorch_lightning import seed_everything | |
from pytorch_lightning.trainer import Trainer | |
import torch | |
sys.path.insert(1, os.path.join(sys.path[0], '..')) | |
from utils.utils import instantiate_from_config | |
from utils_train import get_trainer_callbacks, get_trainer_logger, get_trainer_strategy | |
from utils_train import set_logger, init_workspace, load_checkpoints | |
def get_parser(**parser_kwargs): | |
parser = argparse.ArgumentParser(**parser_kwargs) | |
parser.add_argument("--seed", "-s", type=int, default=20230211, help="seed for seed_everything") | |
parser.add_argument("--name", "-n", type=str, default="", help="experiment name, as saving folder") | |
parser.add_argument("--base", "-b", nargs="*", metavar="base_config.yaml", help="paths to base configs. Loaded from left-to-right. " | |
"Parameters can be overwritten or added with command-line options of the form `--key value`.", default=list()) | |
parser.add_argument("--train", "-t", action='store_true', default=False, help='train') | |
parser.add_argument("--val", "-v", action='store_true', default=False, help='val') | |
parser.add_argument("--test", action='store_true', default=False, help='test') | |
parser.add_argument("--logdir", "-l", type=str, default="logs", help="directory for logging dat shit") | |
parser.add_argument("--auto_resume", action='store_true', default=False, help="resume from full-info checkpoint") | |
parser.add_argument("--auto_resume_weight_only", action='store_true', default=False, help="resume from weight-only checkpoint") | |
parser.add_argument("--debug", "-d", action='store_true', default=False, help="enable post-mortem debugging") | |
return parser | |
def get_nondefault_trainer_args(args): | |
parser = argparse.ArgumentParser() | |
parser = Trainer.add_argparse_args(parser) | |
default_trainer_args = parser.parse_args([]) | |
return sorted(k for k in vars(default_trainer_args) if getattr(args, k) != getattr(default_trainer_args, k)) | |
if __name__ == "__main__": | |
now = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S") | |
local_rank = int(os.environ.get('LOCAL_RANK')) | |
global_rank = int(os.environ.get('RANK')) | |
num_rank = int(os.environ.get('WORLD_SIZE')) | |
parser = get_parser() | |
## Extends existing argparse by default Trainer attributes | |
parser = Trainer.add_argparse_args(parser) | |
args, unknown = parser.parse_known_args() | |
## disable transformer warning | |
transf_logging.set_verbosity_error() | |
seed_everything(args.seed) | |
## yaml configs: "model" | "data" | "lightning" | |
configs = [OmegaConf.load(cfg) for cfg in args.base] | |
cli = OmegaConf.from_dotlist(unknown) | |
config = OmegaConf.merge(*configs, cli) | |
lightning_config = config.pop("lightning", OmegaConf.create()) | |
trainer_config = lightning_config.get("trainer", OmegaConf.create()) | |
## setup workspace directories | |
workdir, ckptdir, cfgdir, loginfo = init_workspace(args.name, args.logdir, config, lightning_config, global_rank) | |
logger = set_logger(logfile=os.path.join(loginfo, 'log_%d:%s.txt'%(global_rank, now))) | |
logger.info("@lightning version: %s [>=1.8 required]"%(pl.__version__)) | |
## MODEL CONFIG >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> | |
logger.info("***** Configing Model *****") | |
config.model.params.logdir = workdir | |
model = instantiate_from_config(config.model) | |
## load checkpoints | |
model = load_checkpoints(model, config.model) | |
## register_schedule again to make ZTSNR work | |
if model.rescale_betas_zero_snr: | |
model.register_schedule(given_betas=model.given_betas, beta_schedule=model.beta_schedule, timesteps=model.timesteps, | |
linear_start=model.linear_start, linear_end=model.linear_end, cosine_s=model.cosine_s) | |
## update trainer config | |
for k in get_nondefault_trainer_args(args): | |
trainer_config[k] = getattr(args, k) | |
num_nodes = trainer_config.num_nodes | |
ngpu_per_node = trainer_config.devices | |
logger.info(f"Running on {num_rank}={num_nodes}x{ngpu_per_node} GPUs") | |
## setup learning rate | |
base_lr = config.model.base_learning_rate | |
bs = config.data.params.batch_size | |
if getattr(config.model, 'scale_lr', True): | |
model.learning_rate = num_rank * bs * base_lr | |
else: | |
model.learning_rate = base_lr | |
## DATA CONFIG >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> | |
logger.info("***** Configing Data *****") | |
data = instantiate_from_config(config.data) | |
data.setup() | |
for k in data.datasets: | |
logger.info(f"{k}, {data.datasets[k].__class__.__name__}, {len(data.datasets[k])}") | |
## TRAINER CONFIG >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> | |
logger.info("***** Configing Trainer *****") | |
if "accelerator" not in trainer_config: | |
trainer_config["accelerator"] = "gpu" | |
## setup trainer args: pl-logger and callbacks | |
trainer_kwargs = dict() | |
trainer_kwargs["num_sanity_val_steps"] = 0 | |
logger_cfg = get_trainer_logger(lightning_config, workdir, args.debug) | |
trainer_kwargs["logger"] = instantiate_from_config(logger_cfg) | |
## setup callbacks | |
callbacks_cfg = get_trainer_callbacks(lightning_config, config, workdir, ckptdir, logger) | |
trainer_kwargs["callbacks"] = [instantiate_from_config(callbacks_cfg[k]) for k in callbacks_cfg] | |
strategy_cfg = get_trainer_strategy(lightning_config) | |
trainer_kwargs["strategy"] = strategy_cfg if type(strategy_cfg) == str else instantiate_from_config(strategy_cfg) | |
trainer_kwargs['precision'] = lightning_config.get('precision', 32) | |
trainer_kwargs["sync_batchnorm"] = False | |
## trainer config: others | |
trainer_args = argparse.Namespace(**trainer_config) | |
trainer = Trainer.from_argparse_args(trainer_args, **trainer_kwargs) | |
## allow checkpointing via USR1 | |
def melk(*args, **kwargs): | |
## run all checkpoint hooks | |
if trainer.global_rank == 0: | |
print("Summoning checkpoint.") | |
ckpt_path = os.path.join(ckptdir, "last_summoning.ckpt") | |
trainer.save_checkpoint(ckpt_path) | |
def divein(*args, **kwargs): | |
if trainer.global_rank == 0: | |
import pudb; | |
pudb.set_trace() | |
import signal | |
signal.signal(signal.SIGUSR1, melk) | |
signal.signal(signal.SIGUSR2, divein) | |
## Running LOOP >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> | |
logger.info("***** Running the Loop *****") | |
if args.train: | |
try: | |
if "strategy" in lightning_config and lightning_config['strategy'].startswith('deepspeed'): | |
logger.info("<Training in DeepSpeed Mode>") | |
## deepspeed | |
if trainer_kwargs['precision'] == 16: | |
with torch.cuda.amp.autocast(): | |
trainer.fit(model, data) | |
else: | |
trainer.fit(model, data) | |
else: | |
logger.info("<Training in DDPSharded Mode>") ## this is default | |
## ddpsharded | |
trainer.fit(model, data) | |
except Exception: | |
#melk() | |
raise | |
# if args.val: | |
# trainer.validate(model, data) | |
# if args.test or not trainer.interrupted: | |
# trainer.test(model, data) |