File size: 8,187 Bytes
8cec513 c2dbf2c a5bf838 8cec513 1210dc8 71a43f8 a5bf838 7b55fe6 553a86b 1210dc8 8cec513 094fc2c 8cec513 96deb6b 7b55fe6 8cec513 1d7da3b 2bb0b78 3aad5f3 3c71c8d 553a86b 3c71c8d dd00657 52dd92a dd00657 1d7da3b 48f4c05 52dd92a 48f4c05 52dd92a dd00657 fe0e69f 553a86b 52dd92a bde3c5a 2824423 553a86b 52dd92a a5bf838 1c33eb8 b832a0a 1c33eb8 bfd27ba babf0fd 14668fa 1edc30c 553a86b 1edc30c 1a82082 553a86b 1a82082 1210dc8 c01015f 553a86b 1210dc8 1edc30c eea2731 553a86b eea2731 19cf0bd cb9d3af 553a86b cb9d3af e79c8e6 96bd6ae 2bb0b78 1d7da3b ab5cd28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
"""Module for working with config dicts"""
import logging
import os
import torch
from axolotl.utils.bench import log_gpu_memory_usage
LOG = logging.getLogger("axolotl")
def choose_device(cfg):
def get_device():
try:
if torch.cuda.is_available():
return f"cuda:{cfg.local_rank}"
if torch.backends.mps.is_available():
return "mps"
raise SystemError("No CUDA/mps device found")
except Exception: # pylint: disable=broad-exception-caught
return "cpu"
cfg.device = get_device()
if cfg.device_map != "auto":
if cfg.device.startswith("cuda"):
cfg.device_map = {"": cfg.local_rank}
else:
cfg.device_map = {"": cfg.device}
# in `accelerate launch`, we need to not pass through any device map and let
# accelerate figure out which parts of the model to put on which gpu
accelerate_vars = [var for var in os.environ if var.startswith("ACCELERATE_USE_")]
if accelerate_vars:
cfg.device_map = None
def normalize_config(cfg):
# setup some derived config / hyperparams
cfg.gradient_accumulation_steps = cfg.gradient_accumulation_steps or (
cfg.batch_size // cfg.micro_batch_size
)
cfg.batch_size = (
cfg.batch_size or cfg.micro_batch_size * cfg.gradient_accumulation_steps
)
cfg.world_size = int(os.environ.get("WORLD_SIZE", 1))
cfg.local_rank = int(os.environ.get("LOCAL_RANK", 0))
choose_device(cfg)
cfg.ddp = cfg.ddp if cfg.ddp is not None else cfg.world_size != 1
if cfg.ddp:
cfg.device_map = {"": int(os.environ.get("LOCAL_RANK", 0))}
cfg.batch_size = cfg.batch_size * cfg.world_size
if cfg.device == "mps":
cfg.load_in_8bit = False
cfg.tf32 = False
if cfg.bf16:
cfg.fp16 = True
cfg.bf16 = False
else:
torch.backends.cuda.matmul.allow_tf32 = cfg.tf32 or False
if cfg.bf16 or cfg.bfloat16:
cfg.torch_dtype = torch.bfloat16
elif cfg.load_in_8bit or cfg.fp16 or cfg.float16:
cfg.torch_dtype = torch.float16
else:
cfg.torch_dtype = torch.float32
log_gpu_memory_usage(LOG, "baseline", cfg.device)
def validate_config(cfg):
if cfg.max_packed_sequence_len and cfg.sample_packing:
raise ValueError(
"please set only one of max_packed_sequence_len (deprecated soon) or sample_packing"
)
if cfg.max_packed_sequence_len:
LOG.warning(
str(
PendingDeprecationWarning(
"max_packed_sequence_len will be deprecated in favor of sample_packing"
)
)
)
if cfg.gradient_accumulation_steps and cfg.batch_size:
raise ValueError(
"please set only one of gradient_accumulation_steps or batch_size"
)
if cfg.batch_size:
LOG.warning(
"%s\n%s",
"batch_size is not recommended. Please use gradient_accumulation_steps instead.",
"To calculate the equivalent gradient_accumulation_steps, divide batch_size / micro_batch_size / number of gpus.",
)
if cfg.load_4bit:
raise ValueError(
"cfg.load_4bit parameter has been deprecated and replaced by cfg.gptq"
)
if cfg.adapter == "qlora":
if cfg.merge_lora:
# can't merge qlora if loaded in 8bit or 4bit
if cfg.load_in_8bit:
raise ValueError("Can't merge qlora if loaded in 8bit")
if cfg.gptq:
raise ValueError("Can't merge qlora if gptq")
if cfg.load_in_4bit:
raise ValueError("Can't merge qlora if loaded in 4bit")
else:
if cfg.load_in_8bit:
raise ValueError("Can't load qlora in 8bit")
if cfg.gptq:
raise ValueError("Can't load qlora if gptq")
if not cfg.load_in_4bit:
raise ValueError("Require cfg.load_in_4bit to be True for qlora")
if not cfg.load_in_8bit and cfg.adapter == "lora":
LOG.warning("We recommend setting `load_in_8bit: true` for LORA finetuning")
if cfg.relora_steps:
if cfg.adapter not in ("lora", "qlora"):
raise ValueError("cfg.adapter must be lora or qlora to use ReLoRA")
if cfg.fsdp:
raise ValueError("fsdp not supported with ReLoRA")
if cfg.deepspeed:
raise ValueError("deepspeed not supported with ReLoRA")
if cfg.lr_scheduler == "one_cycle":
raise ValueError("ReLoRA is not compatible with the one_cycle scheduler")
if cfg.trust_remote_code:
LOG.warning(
"`trust_remote_code` is set to true. Please make sure that you reviewed the remote code/model."
)
if cfg.push_dataset_to_hub and cfg.hf_use_auth_token is not True:
raise ValueError(
"Require cfg.hf_use_auth_token to be True for push_dataset_to_hub"
)
if (cfg.base_model and "falcon" in cfg.base_model.lower()) and cfg.fsdp:
raise ValueError("FSDP is not supported for falcon models")
if (
cfg.base_model and "mpt" in cfg.base_model.lower()
) and cfg.gradient_checkpointing:
raise ValueError("gradient_checkpointing is not supported for MPT models")
if cfg.flash_optimum is True:
if cfg.adapter:
LOG.warning("BetterTransformers probably doesn't work with PEFT adapters")
if cfg.fp16 or cfg.bf16:
raise ValueError("AMP is not supported with BetterTransformer")
if cfg.float16 is not True and cfg.bloat16 is not True:
LOG.warning(
"You should probably set bfloat16 or float16 to true to "
"load the model in float16 for BetterTransformers"
)
if int(torch.__version__.split(".", maxsplit=1)[0]) < 2:
LOG.warning("torch>=2.0.0 required")
raise ValueError(
f"flash_optimum for BetterTransformers may not be used with {torch.__version__}"
)
if cfg.pretraining_dataset and cfg.group_by_length:
LOG.warning(
"You probably want to disable group_by_length as it will force a streamed dataset to download completely."
)
if any([cfg.adam_beta1, cfg.adam_beta2, cfg.adam_epsilon]) and (
not cfg.optimizer or "adamw" not in cfg.optimizer
):
LOG.warning("adamw hyperparameters found, but no adamw optimizer set")
if cfg.push_to_hub_model_id:
raise ValueError(
"push_to_hub_model_id is deprecated. Please use hub_model_id instead."
)
if cfg.gptq and cfg.model_revision:
raise ValueError(
"model_revision is not supported for GPTQ models. "
+ "Please download the model from HuggingFace Hub manually for correct branch, "
+ "point to its path, and remove model_revision from the config."
)
if cfg.sample_packing and cfg.sdp_attention:
# incompatible due to bug w/ accelerate causing 0.0 loss when using llama2
raise ValueError(
"sample_packing not compatible with sdp_attention. Use flash_attention"
)
if cfg.sample_packing and cfg.xformers_attention:
raise ValueError(
"sample_packing not compatible with xformers_attention. Use flash_attention"
)
# TODO
# MPT 7b
# https://github.com/facebookresearch/bitsandbytes/issues/25
# no 8bit adaAmw w bf16
# GPT-NeoX
# evals broken when extending context len
# File "/root/miniconda3/envs/py3.9/lib/python3.9/site-packages/transformers/models/gpt_neox/modeling_gpt_neox.py", line 162, in forward attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask)
# File "/root/miniconda3/envs/py3.9/lib/python3.9/site-packages/optimum/bettertransformer/models/attention.py", line 74, in gpt2_wrapped_scaled_dot_product
# attention_mask = causal_mask + attention_mask
# RuntimeError: The size of tensor a (2048) must match the size of tensor b (8132) at non-singleton dimension 3
|