File size: 9,432 Bytes
2bb0b78 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 |
# pylint: skip-file
import hashlib
import itertools
import logging
import math
from typing import Any, Callable, List, Union
import numba
import numpy as np
from torch.utils.data import DistributedSampler, Sampler
LOG = logging.getLogger("axolotl.utils.dataloader")
@numba.njit
def ffd_check(a: np.ndarray, c: int, n: int):
# First-fit-decreasing bin packing
# Check if a[] could fit in n bins with capacity c
# https://en.wikipedia.org/wiki/First-fit-decreasing_bin_packing
a = np.sort(a)[::-1]
bins = np.full((n,), c, dtype=a.dtype)
for size in a:
not_found = True
for idx in range(n):
if bins[idx] >= size:
bins[idx] -= size
not_found = False
break
if not_found:
return False
return True
@numba.njit
def ffd_with_result(a: np.ndarray, c: int, start_index: int):
# First-fit-decreasing bin packing (with result return)
indices = np.argsort(a)[::-1]
a = a[indices]
bins: List[Any] = []
bins_result: List[Any] = []
for a_id, size in enumerate(a):
add_new = True
for idx in range(len(bins)):
if bins[idx] >= size:
bins[idx] -= size
bins_result[idx].append(indices[a_id] + start_index)
add_new = False
break
if add_new:
bins.append(c - size)
bins_result.append([indices[a_id] + start_index])
return bins_result, len(a)
@numba.njit
def allocate(
lengths: np.ndarray, lengths_cumsum: np.ndarray, rank: int, c: int, n: int
):
"""
:param lengths: array of lengths of each sample
:param lengths_cumsum: cumulative sum of consecutive lengths
:param rank: rank for this process
:param c: length of tokens per batch
:param n: number of ranks
:return:
"""
# Dynamic batch allocator, similar to Multifit
# https://en.wikipedia.org/wiki/Multifit_algorithm
# ~99.5% efficiency on OpenChat training set (12 * 2048 ctx len)
s = 0
start_index = 0
result = []
result_totseqs = []
while True:
# binary search [left, right)
left = 1
right = 1 + np.searchsorted(lengths_cumsum[start_index:], s + c * n, "right")
while right - left > 1:
mid = (left + right) // 2
if ffd_check(lengths[start_index : start_index + mid], c, n):
left = mid
else:
right = mid
# use length left
batch, tot_seqs = ffd_with_result(
lengths[start_index : start_index + left], c, start_index
)
if len(batch) < n:
break
start_index += left
s = lengths_cumsum[start_index - 1]
# add local rank
result.append(batch[rank])
# add total seqs for all ranks
result_totseqs.append(tot_seqs)
# yield batch[rank], tot_seqs, s, len(result) * c * n
return result, result_totseqs, s, len(result) * c * n
def chunk(iterable, n):
"""
Chunk data into tuples of length n
"""
# batched('ABCDEFG', 3) --> ABC DEF G
if n < 1:
raise ValueError("n must be at least one")
it = iter(iterable)
while batch := tuple(itertools.islice(it, n)):
yield batch
def hash_indices(lst: List[int]) -> str:
# Convert the list of integers to a string representation
concatenated = ",".join(map(str, lst))
# Generate the hash
sha256 = hashlib.sha256()
sha256.update(concatenated.encode())
return sha256.hexdigest()
class MultipackDistributedDataloader:
"""Unpadded data loading using Multipack.
Adapted from https://github.com/imoneoi/openchat/blob/v3_fix_mle_loss/ochat/training_deepspeed/multipack_dataloader.py
Approximate (at most ~1.22x) the optimal solution of the identical-machines scheduling problem, which is NP-hard.
"""
def __init__(
self,
dataset: Any,
collate_fn: Callable,
seq_max_length: int = 2048,
batch_size: int = 1,
sampler: Union[Sampler, DistributedSampler] = None,
packing_efficiency_estimate: float = 1.0,
sample_packing_seq_len_multiplier: int = 1,
device_count: int = 1,
):
# Dataset
self.dataset = dataset
self.lengths = (
dataset.data.column("position_ids")
.to_pandas()
.apply(lambda x: x[-1] + 1)
.values
)
assert isinstance(self.lengths, np.ndarray)
assert batch_size % sample_packing_seq_len_multiplier == 0
assert batch_size >= sample_packing_seq_len_multiplier
self.sampler = sampler
self.batch_size = batch_size
self.sample_packing_seq_len_multiplier = sample_packing_seq_len_multiplier
self.seq_max_length = seq_max_length
self.batch_max_length = batch_size * seq_max_length
self.collate_fn = collate_fn
self.num_replicas = 1
self.rank = 0
# statistics
self.eff_total_used = 0
self.eff_total_slots = 0
self.packing_efficiency_estimate = packing_efficiency_estimate or 1.0
self.device_count = device_count
def generate_batches(self, set_stats=False):
LOG.info("generating packed batches")
if self.sampler:
indices = [idx for idx in self.sampler]
else:
indices = range(0, len(self.dataset))
LOG.info(hash_indices(indices))
lengths = self.lengths[indices]
lengths_cumsum = np.cumsum(lengths)
batches, totseqs, total_used, total_slots = allocate(
lengths=lengths,
lengths_cumsum=lengths_cumsum,
rank=self.rank,
# c=self.batch_max_length,
c=self.seq_max_length * self.sample_packing_seq_len_multiplier,
n=self.num_replicas,
)
batches = [[indices[b_idx] for b_idx in batch] for batch in batches]
# statistics
if set_stats:
self.eff_total_used += total_used
self.eff_total_slots += total_slots
return batches, totseqs
def __iter__(self):
if hasattr(self.sampler, "set_epoch"):
new_epoch = self.sampler.epoch + 1
self.sampler.set_epoch(new_epoch)
LOG.info(f"calling sampler.set_epoch({new_epoch})")
all_batches, _ = self.generate_batches(set_stats=True)
features = self.dataset.features.keys()
len_remaining = self._len_est()
for batches in chunk(
all_batches, self.batch_size // self.sample_packing_seq_len_multiplier
):
chunked_data = []
attn_mask_cum_idx = 0
for batch in batches:
concatenated = {}
batched_data = [self.dataset[batch_idx] for batch_idx in batch]
for feature in features:
if feature == "attention_mask":
arrays = [
(attn_mask_cum_idx + idx + 1) * np.array(item[feature])
for idx, item in enumerate(batched_data)
if feature in item
]
attn_mask_cum_idx += len(batched_data)
concatenated[feature] = np.concatenate(arrays)
else:
arrays = [
np.array(item[feature])
for item in batched_data
if feature in item
]
concatenated[feature] = np.concatenate(arrays)
chunked_data.append(concatenated)
yield self.collate_fn(chunked_data)
len_remaining -= 1
if not len_remaining:
return
def _len_est(self):
lengths_sum = np.sum(self.lengths)
lengths_sum_per_device = lengths_sum // self.device_count
LOG.info(
f"packing_efficiency_estimate: {self.packing_efficiency_estimate} "
f"total_num_tokens per device: {lengths_sum_per_device}"
)
# shave off 1% + 1 for dealing with variance in packing from random sampler to sampler
return (
math.floor(
0.99
* lengths_sum_per_device
/ self.packing_efficiency_estimate
// self.seq_max_length
// self.batch_size
)
- 1
)
def __len__(self):
# this doesn't return the actual length b/c with distributed samplers, not all dataloaders get
# the same share of total tokens
# if not self.eff_total_used:
# batches, _ = self.generate_batches(set_stats=True)
# LOG.info(
# f"packing_efficiency_estimate: {self.packing_efficiency_estimate} "
# f"actual packing efficiency: {self.efficiency()}"
# )
return max(1, self._len_est())
def len_w_stats(self):
if not self.eff_total_used:
batches, _ = self.generate_batches(set_stats=True)
LOG.info(
f"packing_efficiency_estimate: {self.packing_efficiency_estimate} "
f"actual packing efficiency: {self.efficiency()}"
)
return max(1, self._len_est())
def efficiency(self):
return self.eff_total_used / self.eff_total_slots
|