File size: 23,322 Bytes
ddb86ea ad2b48c 55b8542 6045345 097d367 ad2b48c 2bb0b78 ebaec3c 2bb0b78 097d367 2bb0b78 097d367 6045345 2bb0b78 097d367 6045345 2bb0b78 6045345 2bb0b78 c49729d 6045345 1210dc8 7b55fe6 1210dc8 2bb0b78 7dc580b 9105935 553a86b 6045345 2bb0b78 ebaec3c c49729d 2bb0b78 c49729d 7dc580b c49729d 7dc580b c49729d 7dc580b c49729d 7dc580b 2bb0b78 7dc580b ddb86ea ce34d64 37293dc ce34d64 9493b1b 3a50377 9493b1b 3a50377 9493b1b 2bb0b78 7748f3d 6045345 ddb86ea 6045345 2cfe9e9 ddb86ea dd00657 7748f3d c0f50d9 7748f3d c0f50d9 7748f3d 29936bb ad2b48c 6045345 c49729d 097d367 7748f3d 097d367 6d0ee4b e79c8e6 612aabd 1514739 612aabd 73a0b6e 5491278 612aabd 2bb0b78 5d48a10 da10af0 5d48a10 da10af0 5d48a10 ebaec3c 3c2ad00 2bb0b78 6045345 2bc1a5b 6045345 a10a826 6045345 2ef4634 6045345 2bb0b78 ddb86ea cfcc549 2ef4634 ddb86ea 6045345 36aaea0 2bc1a5b 247825b 2bb0b78 6045345 ad2b48c 7748f3d dd00657 ddb86ea 9493b1b 7748f3d 0a472e1 7748f3d 0a472e1 7748f3d 0a472e1 7748f3d 6045345 9105935 99383f1 6045345 9105935 6045345 813aab3 7b55fe6 6045345 813aab3 99383f1 37293dc 813aab3 6045345 1210dc8 94f5e41 2bb0b78 0d6708b 55b8542 974dc00 55b8542 974dc00 55b8542 553a86b 55b8542 974dc00 55b8542 ce34d64 e65aeed 7dc580b ce34d64 9493b1b 6045345 2bb0b78 94f5e41 6045345 cc77bab 6045345 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 |
"""Module containing the Trainer class and related functions"""
import importlib
import logging
import math
import os
import sys
from contextlib import contextmanager
from dataclasses import dataclass, field
from functools import partial
from pathlib import Path
from typing import Optional, Union
import bitsandbytes as bnb
import numpy as np
import torch.cuda
import transformers
from datasets import Dataset, set_caching_enabled
from torch import nn
from torch.optim.lr_scheduler import OneCycleLR
from torch.utils.data import DataLoader, DistributedSampler, RandomSampler
from transformers import EarlyStoppingCallback, Trainer, TrainingArguments
from transformers.trainer_pt_utils import get_parameter_names
from axolotl.utils.callbacks import (
GPUStatsCallback,
SaveBetterTransformerModelCallback,
SavePeftModelCallback,
)
from axolotl.utils.collators import DataCollatorForSeq2Seq
from axolotl.utils.dataloader import MultipackDistributedDataloader
from axolotl.utils.schedulers import (
InterpolatingLogScheduler,
get_cosine_schedule_with_quadratic_warmup,
)
LOG = logging.getLogger("axolotl")
@torch.jit.script
def weighted_cross_entropy(
logits: torch.Tensor, labels: torch.Tensor, weights: torch.Tensor
):
# Flatten the logits, labels, and weights tensors
logits = logits.view(
-1, logits.size(-1)
) # logits becomes of shape [batch_size*sequence_length, vocab_size]
labels = labels.view(-1) # labels becomes of shape [batch_size*sequence_length]
weights = weights.view(-1) # weights becomes of shape [batch_size*sequence_length]
# Compute the unweighted cross entropy loss
losses = torch.nn.functional.cross_entropy(logits, labels, reduction="none")
# Apply the weights to the losses and compute their sum
return (weights * losses).sum()
@torch.jit.script
def create_weighted_mask(labels: torch.Tensor):
# Check if the tensor is 2D. If not, unsqueeze it to make it 2D
if len(labels.shape) == 1:
labels = labels.unsqueeze(0)
weights = torch.zeros_like(labels).float()
for i in range(labels.shape[0]):
mask = labels[i] != -100
# Create a tensor to track group ids
group_ids = torch.zeros_like(labels[i]).int()
curr_group_id = 0
for j in range(1, len(labels[i])):
if mask[j] and not mask[j - 1]: # switch from masked to unmasked label
curr_group_id += 1 # start new group
group_ids[j] = (
curr_group_id if mask[j] else 0
) # assign group id if unmasked label
# Count only unmasked labels in each group
group_counts = torch.bincount(group_ids[mask])
mask_weights = torch.zeros_like(labels[i]).float()
mask_weights[mask] = 1.0 / group_counts[group_ids[mask]]
weights[i] = mask_weights
return weights.squeeze() # squeeze the output to match the input dimension
def trainer_weighted_loss(model_output, labels, shift_labels=True):
logits = (
model_output["logits"] if isinstance(model_output, dict) else model_output[0]
)
if shift_labels:
logits = logits[..., :-1, :].contiguous()
labels = labels[..., 1:].contiguous()
weights = create_weighted_mask(labels)
return weighted_cross_entropy(logits, labels, weights)
@dataclass
class AxolotlTrainingArguments(TrainingArguments):
"""
Extend the base TrainingArguments for axolotl helpers
"""
lr_quadratic_warmup: bool = field(
default=False,
metadata={"help": "Use quadratic warmup for cosine scheduling."},
)
sample_packing: bool = field(
default=False,
metadata={"help": "Use sample packing for efficient training."},
)
sample_packing_efficiency: float = field(
default=1.0,
metadata={"help": "Sample packing efficiency for calculating batch length."},
)
max_seq_length: int = field(
default=2048,
metadata={"help": "The maximum sequence length the model can handle"},
)
sample_packing_seq_len_multiplier: int = field(
default=1,
metadata={"help": "the multiplier for the max len for packed sequences"},
)
class AxolotlTrainer(Trainer):
"""
Extend the base Trainer for axolotl helpers
"""
args = None # type: AxolotlTrainingArguments
def create_scheduler(
self, num_training_steps: int, optimizer: torch.optim.Optimizer = None
):
"""
Setup the scheduler. The optimizer of the trainer must have been set up either before this method is called or
passed as an argument.
Args:
num_training_steps (int): The number of training steps to do.
optimizer (torch.optim.Optimizer): The training optimizer
"""
# fmt: off
if self.lr_scheduler is None: # type: ignore # pylint: disable=access-member-before-definition
# fmt: on
if (
self.args.lr_scheduler_type == "cosine"
and self.args.lr_quadratic_warmup is True
):
self.lr_scheduler = get_cosine_schedule_with_quadratic_warmup( # pylint: disable=attribute-defined-outside-init
optimizer,
num_warmup_steps=self.args.get_warmup_steps(num_training_steps),
num_training_steps=num_training_steps,
)
else:
return super().create_scheduler(num_training_steps, optimizer)
return self.lr_scheduler
def _get_train_sampler(self) -> Optional[torch.utils.data.Sampler]:
if self.args.world_size > 1 and self.args.sample_packing:
return DistributedSampler(
self.train_dataset,
num_replicas=self.args.world_size,
rank=self.args.process_index,
seed=self.args.seed,
)
return super()._get_train_sampler()
def get_train_dataloader(self) -> Union[DataLoader, MultipackDistributedDataloader]:
if self.args.sample_packing:
train_sampler = self._get_train_sampler()
return self.accelerator.prepare(
MultipackDistributedDataloader(
self.train_dataset,
batch_size=self._train_batch_size,
seq_max_length=self.args.max_seq_length,
collate_fn=self.data_collator,
sampler=train_sampler,
packing_efficiency_estimate=self.args.sample_packing_efficiency,
sample_packing_seq_len_multiplier=self.args.sample_packing_seq_len_multiplier,
device_count=int(os.environ.get("WORLD_SIZE", 1)),
)
)
return super().get_train_dataloader()
def get_eval_dataloader(
self, eval_dataset: Optional[Dataset] = None
) -> Union[DataLoader, MultipackDistributedDataloader]:
if self.args.sample_packing:
eval_dataset = (
eval_dataset if eval_dataset is not None else self.eval_dataset
)
eval_sampler = self._get_eval_sampler(eval_dataset)
return self.accelerator.prepare(
MultipackDistributedDataloader(
eval_dataset,
batch_size=self.args.eval_batch_size,
seq_max_length=self.args.max_seq_length,
collate_fn=self.data_collator,
sampler=eval_sampler,
packing_efficiency_estimate=self.args.sample_packing_efficiency,
sample_packing_seq_len_multiplier=self.args.eval_batch_size,
device_count=int(os.environ.get("WORLD_SIZE", 1)),
)
)
return super().get_eval_dataloader(eval_dataset)
def compute_loss(self, model, inputs, return_outputs=False):
# use one's weighted cross entropy loss calc
# if self.args.sample_packing:
# labels = inputs.pop("labels")
# outputs = model(**inputs)
# loss = trainer_weighted_loss(outputs, labels, shift_labels=True)
# return (loss, outputs) if return_outputs else loss
return super().compute_loss(model, inputs, return_outputs=return_outputs)
class OneCycleLRSchedulerTrainer(AxolotlTrainer):
"""
Trainer subclass that uses the OneCycleLR scheduler
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.lr_scheduler = None
def create_scheduler(
self,
num_training_steps: int,
optimizer: Optional[torch.optim.Optimizer] = None,
):
optimizer = self.optimizer if optimizer is None else optimizer
num_warmup_steps = self.args.get_warmup_steps(num_training_steps)
pct_start = num_warmup_steps / num_training_steps
self.lr_scheduler = OneCycleLR(
optimizer,
max_lr=self.args.learning_rate,
total_steps=num_training_steps,
pct_start=pct_start,
div_factor=6,
)
return self.lr_scheduler
def add_position_ids(sample):
sample["position_ids"] = torch.arange(len(sample["input_ids"]))
return sample
def drop_long_seq(sample, sequence_len=2048):
return len(sample["input_ids"]) <= sequence_len
@contextmanager
def disable_datasets_caching():
try:
set_caching_enabled(False)
yield
finally:
set_caching_enabled(True)
def process_datasets_for_packing(cfg, train_dataset, eval_dataset):
if cfg.sample_packing:
drop_long = partial(drop_long_seq, sequence_len=cfg.sequence_len)
train_dataset = train_dataset.filter(drop_long, num_proc=os.cpu_count()).map(
add_position_ids, num_proc=os.cpu_count()
)
if eval_dataset:
eval_dataset = eval_dataset.filter(drop_long, num_proc=os.cpu_count()).map(
add_position_ids, num_proc=os.cpu_count()
)
return train_dataset, eval_dataset
def calculate_total_num_steps(cfg, train_dataset, tokenizer):
if cfg.sample_packing:
# we have to drop anything longer then sequence len otherwise
# flash attention with position ids fails
if not cfg.total_num_tokens:
LOG.info("calculating total_num_tokens")
total_num_tokens = np.sum(
train_dataset.data.column("input_ids")
.to_pandas()
.apply(lambda x: len(x)) # pylint: disable=unnecessary-lambda
.values
)
LOG.info(f"π UPDATE CONFIG WITH: `total_num_tokens: {total_num_tokens}`")
cfg.total_num_tokens = total_num_tokens
if cfg.sample_packing_eff_est:
total_num_steps = (
# match count to len est in dataloader
(
math.floor(
0.99
* cfg.total_num_tokens
/ cfg.sample_packing_eff_est
/ cfg.sequence_len
// cfg.batch_size
// int(os.environ.get("WORLD_SIZE", 1))
)
- 1
)
* cfg.num_epochs
)
LOG.info(
f"total_num_tokens: {cfg.total_num_tokens}, total_num_steps: {total_num_steps}"
)
else:
sampler = RandomSampler(train_dataset)
data_loader = MultipackDistributedDataloader(
train_dataset,
batch_size=cfg.micro_batch_size,
seq_max_length=cfg.max_packed_sequence_len or cfg.sequence_len,
collate_fn=DataCollatorForSeq2Seq(
tokenizer,
return_tensors="pt",
padding="longest",
),
sampler=sampler,
packing_efficiency_estimate=cfg.sample_packing_eff_est,
sample_packing_seq_len_multiplier=cfg.micro_batch_size,
device_count=int(os.environ.get("WORLD_SIZE", 1)),
)
data_loader_len = data_loader.len_w_stats()
actual_eff = data_loader.efficiency()
LOG.info(f"data_loader_len: {data_loader_len}")
total_num_steps = int(
math.floor(
data_loader_len
* cfg.micro_batch_size
* cfg.num_epochs
// cfg.batch_size
)
)
LOG.info(
f"π UPDATE CONFIG WITH: `sample_packing_eff_est: {math.ceil(actual_eff * 100.0) / 100.0}`"
)
cfg.sample_packing_eff_est = math.ceil(actual_eff * 100.0) / 100.0
else:
total_num_steps = int(
math.ceil(len(train_dataset) * cfg.num_epochs / cfg.batch_size)
)
LOG.info(f"total_num_steps: {total_num_steps}")
return total_num_steps
def setup_fsdp_envs(cfg):
os.environ["ACCELERATE_USE_FSDP"] = "true"
if cfg.fsdp_config.fsdp_sync_module_states:
os.environ["FSDP_SYNC_MODULE_STATES"] = "true"
if cfg.fsdp_config.fsdp_state_dict_type:
os.environ["FSDP_STATE_DICT_TYPE"] = cfg.fsdp_config.fsdp_state_dict_type
def setup_trainer(cfg, train_dataset, eval_dataset, model, tokenizer, total_num_steps):
if cfg.fsdp:
setup_fsdp_envs(cfg)
warmup_steps = (
cfg.warmup_steps
if cfg.warmup_steps is not None
else min(int(0.03 * total_num_steps), 100)
)
logging_steps = (
cfg.logging_steps
if cfg.logging_steps is not None
else max(min(int(0.005 * total_num_steps), 10), 1)
)
training_arguments_kwargs = {}
if cfg.bf16 == "full":
training_arguments_kwargs["bf16_full_eval"] = True
else:
training_arguments_kwargs["bf16"] = cfg.bf16
training_arguments_kwargs["fp16"] = (cfg.fp16 and not cfg.bf16) or False
training_arguments_kwargs["tf32"] = cfg.tf32
training_arguments_kwargs["warmup_steps"] = warmup_steps
training_arguments_kwargs["logging_steps"] = logging_steps
if cfg.seed:
training_arguments_kwargs["seed"] = cfg.seed
if cfg.gradient_checkpointing:
if cfg.gptq:
from alpaca_lora_4bit.gradient_checkpointing import (
apply_gradient_checkpointing,
)
gradient_checkpointing_ratio = (
cfg.gradient_checkpointing_ratio
if cfg.gradient_checkpointing_ratio
else 1.0
)
apply_gradient_checkpointing(
model, checkpoint_ratio=gradient_checkpointing_ratio
)
else:
training_arguments_kwargs[
"gradient_checkpointing"
] = cfg.gradient_checkpointing
if cfg.fsdp:
training_arguments_kwargs["fsdp"] = cfg.fsdp
if cfg.fsdp_config:
training_arguments_kwargs["fsdp_config"] = dict(cfg.fsdp_config)
if cfg.lr_quadratic_warmup is not None:
training_arguments_kwargs["lr_quadratic_warmup"] = cfg.lr_quadratic_warmup
# deepspeed
if (
os.environ.get("ACCELERATE_USE_DEEPSPEED") == "true"
and torch.cuda.device_count() > 1
):
if cfg.deepspeed:
training_arguments_kwargs["deepspeed"] = cfg.deepspeed
else:
# make a guess here
# TODO search Path("./") for one
training_arguments_kwargs["deepspeed"] = "./ds_config.json"
if cfg.adam_beta1:
training_arguments_kwargs["adam_beta1"] = cfg.adam_beta1
if cfg.adam_beta2:
training_arguments_kwargs["adam_beta2"] = cfg.adam_beta2
if cfg.adam_epsilon:
training_arguments_kwargs["adam_epsilon"] = cfg.adam_epsilon
if cfg.max_grad_norm:
training_arguments_kwargs["max_grad_norm"] = cfg.max_grad_norm
if cfg.hub_model_id:
training_arguments_kwargs["hub_model_id"] = cfg.hub_model_id
training_arguments_kwargs["push_to_hub"] = True
training_arguments_kwargs["hub_private_repo"] = True
if cfg.hub_strategy:
training_arguments_kwargs["hub_strategy"] = cfg.hub_strategy
if cfg.save_safetensors:
training_arguments_kwargs["save_safetensors"] = cfg.save_safetensors
if cfg.sample_packing_eff_est:
training_arguments_kwargs[
"sample_packing_efficiency"
] = cfg.sample_packing_eff_est
if cfg.val_set_size == 0:
training_arguments_kwargs["evaluation_strategy"] = "no"
elif cfg.eval_steps:
training_arguments_kwargs["evaluation_strategy"] = "steps"
training_arguments_kwargs["eval_steps"] = cfg.eval_steps
else:
# we have an eval set, but no steps defined, use epoch
training_arguments_kwargs["evaluation_strategy"] = "epoch"
training_args = AxolotlTrainingArguments( # pylint: disable=unexpected-keyword-arg
max_steps=total_num_steps if cfg.max_steps else -1,
max_seq_length=cfg.sequence_len,
per_device_train_batch_size=cfg.micro_batch_size,
per_device_eval_batch_size=cfg.eval_batch_size
if cfg.eval_batch_size is not None
else cfg.micro_batch_size,
gradient_accumulation_steps=cfg.gradient_accumulation_steps,
eval_accumulation_steps=cfg.gradient_accumulation_steps,
num_train_epochs=cfg.num_epochs,
learning_rate=cfg.learning_rate,
save_strategy="steps" if cfg.save_steps else "epoch",
save_steps=cfg.save_steps,
output_dir=cfg.output_dir,
save_total_limit=cfg.save_total_limit if cfg.save_total_limit else 4,
load_best_model_at_end=(
cfg.load_best_model_at_end is not False
and cfg.val_set_size > 0
and cfg.save_steps
and cfg.save_steps % cfg.eval_steps == 0
and cfg.load_in_8bit is not True
)
or False,
ddp_find_unused_parameters=False if cfg.ddp else None,
group_by_length=cfg.group_by_length,
report_to="wandb" if cfg.use_wandb else None,
run_name=cfg.wandb_run_id if cfg.use_wandb else None,
optim=cfg.optimizer if cfg.optimizer else "adamw_hf",
lr_scheduler_type=cfg.lr_scheduler
if cfg.lr_scheduler and cfg.lr_scheduler not in ("one_cycle", "log_sweep")
else "cosine",
weight_decay=cfg.weight_decay if cfg.weight_decay is not None else 0.0,
sample_packing=cfg.sample_packing if cfg.sample_packing else False,
sample_packing_seq_len_multiplier=cfg.micro_batch_size,
**training_arguments_kwargs,
)
trainer_kwargs = {}
if cfg.optimizer == "adamw_anyprecision":
if Path(cfg.torchdistx_path).exists():
sys.path.append(cfg.torchdistx_path)
importlib.import_module("torchdistx")
if (
cfg.optimizer == "adamw_bnb_8bit"
and not cfg.gptq
and "deepspeed" not in training_arguments_kwargs
and not cfg.fsdp
):
decay_parameters = get_parameter_names(model, [nn.LayerNorm])
decay_parameters = [name for name in decay_parameters if "bias" not in name]
optimizer_grouped_parameters = [
{
"params": [
p
for n, p in model.named_parameters()
if (n in decay_parameters and p.requires_grad)
],
"weight_decay": training_args.weight_decay,
},
{
"params": [
p
for n, p in model.named_parameters()
if (n not in decay_parameters and p.requires_grad)
],
"weight_decay": 0.0,
},
]
optimizer = bnb.optim.Adam8bit(
optimizer_grouped_parameters,
betas=(training_args.adam_beta1, training_args.adam_beta2),
eps=training_args.adam_epsilon,
lr=training_args.learning_rate,
)
if cfg.lr_scheduler == "one_cycle":
lr_scheduler_kwargs = (
cfg.lr_scheduler_kwargs if cfg.lr_scheduler_kwargs else {}
)
lr_scheduler = OneCycleLR(
optimizer,
cfg.learning_rate,
total_steps=total_num_steps,
epochs=cfg.num_epochs,
div_factor=cfg.lr_div_factor if cfg.lr_div_factor else 6,
**lr_scheduler_kwargs,
)
elif cfg.lr_scheduler == "log_sweep":
lr_scheduler = InterpolatingLogScheduler(
optimizer,
cfg.warmup_steps,
cfg.log_sweep_min_lr if cfg.log_sweep_min_lr else 1e-10,
cfg.log_sweep_max_lr if cfg.log_sweep_max_lr else 10,
)
else:
lr_scheduler = transformers.get_cosine_schedule_with_warmup(
optimizer,
training_args.warmup_steps,
total_num_steps,
)
trainer_kwargs["optimizers"] = (optimizer, lr_scheduler)
callbacks = []
callbacks.append(GPUStatsCallback(cfg))
# TODO on_save callback to sync checkpoints to GCP/AWS in background
if cfg.early_stopping_patience:
early_stop_cb = EarlyStoppingCallback(
cfg.early_stopping_patience,
)
callbacks.append(early_stop_cb)
if cfg.local_rank == 0 and cfg.adapter in [
"lora",
"qlora",
]: # only save in rank 0
callbacks.append(SavePeftModelCallback)
if hasattr(model, "use_bettertransformer") and model.use_bettertransformer is True:
callbacks.append(SaveBetterTransformerModelCallback)
data_collator_kwargs = {
"padding": True,
}
if cfg.collator_pad_to_longest:
data_collator_kwargs["padding"] = "longest"
else:
# A100 is best at 64, while others at 8. Let's use the larger so we don't have to check
# https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html
data_collator_kwargs["pad_to_multiple_of"] = 64
if cfg.is_llama_derived_model and cfg.landmark_attention:
from axolotl.monkeypatch.llama_landmark_attn import (
add_mem_tokens,
get_mem_id,
set_model_mem_id,
)
set_model_mem_id(model, tokenizer)
LOG.info("Adding landmark attention tokens to dataset")
for dataset in [train_dataset, eval_dataset]:
dataset = dataset.map(
partial(add_mem_tokens, mem_freq=50, mem_id=get_mem_id(tokenizer)),
batched=False,
num_proc=32,
)
trainer_cls = (
OneCycleLRSchedulerTrainer
if cfg.lr_scheduler == "one_cycle" and (cfg.fsdp or cfg.adapter == "qlora")
else AxolotlTrainer
)
trainer = trainer_cls(
model=model,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
args=training_args,
data_collator=DataCollatorForSeq2Seq(
tokenizer,
return_tensors="pt",
**data_collator_kwargs,
),
callbacks=callbacks,
**trainer_kwargs,
)
return trainer
|