File size: 5,571 Bytes
9218ebe
 
 
 
 
 
 
 
03e5907
9218ebe
12a2dbb
9218ebe
12a2dbb
9218ebe
 
 
 
 
 
 
 
 
 
 
 
 
12a2dbb
03e5907
9218ebe
 
 
 
 
 
 
 
 
 
2414673
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
03e5907
2414673
 
 
 
 
 
 
 
 
 
03e5907
2414673
 
12a2dbb
03e5907
2414673
 
 
 
 
 
 
 
 
 
 
 
9218ebe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
03e5907
9218ebe
 
 
 
 
 
 
 
 
 
03e5907
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
"""
E2E tests for lora llama
"""

import logging
import os
import tempfile
import unittest
from pathlib import Path

from axolotl.cli import load_datasets
from axolotl.common.cli import TrainerCliArgs
from axolotl.train import train
from axolotl.utils.config import normalize_config
from axolotl.utils.dict import DictDefault

LOG = logging.getLogger("axolotl.tests.e2e")
os.environ["WANDB_DISABLED"] = "true"


class TestLoraLlama(unittest.TestCase):
    """
    Test case for Llama models using LoRA
    """

    def test_lora(self):
        # pylint: disable=duplicate-code
        output_dir = tempfile.mkdtemp()
        cfg = DictDefault(
            {
                "base_model": "JackFram/llama-68m",
                "base_model_config": "JackFram/llama-68m",
                "tokenizer_type": "LlamaTokenizer",
                "sequence_len": 1024,
                "load_in_8bit": True,
                "adapter": "lora",
                "lora_r": 32,
                "lora_alpha": 64,
                "lora_dropout": 0.05,
                "lora_target_linear": True,
                "val_set_size": 0.1,
                "special_tokens": {
                    "unk_token": "<unk>",
                    "bos_token": "<s>",
                    "eos_token": "</s>",
                },
                "datasets": [
                    {
                        "path": "mhenrichsen/alpaca_2k_test",
                        "type": "alpaca",
                    },
                ],
                "num_epochs": 2,
                "micro_batch_size": 8,
                "gradient_accumulation_steps": 1,
                "output_dir": output_dir,
                "learning_rate": 0.00001,
                "optimizer": "adamw_torch",
                "lr_scheduler": "cosine",
            }
        )
        normalize_config(cfg)
        cli_args = TrainerCliArgs()
        dataset_meta = load_datasets(cfg=cfg, cli_args=cli_args)

        train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta)
        assert (Path(output_dir) / "adapter_model.bin").exists()

    def test_lora_packing(self):
        # pylint: disable=duplicate-code
        output_dir = tempfile.mkdtemp()
        cfg = DictDefault(
            {
                "base_model": "JackFram/llama-68m",
                "base_model_config": "JackFram/llama-68m",
                "tokenizer_type": "LlamaTokenizer",
                "sequence_len": 1024,
                "sample_packing": True,
                "flash_attention": True,
                "load_in_8bit": True,
                "adapter": "lora",
                "lora_r": 32,
                "lora_alpha": 64,
                "lora_dropout": 0.05,
                "lora_target_linear": True,
                "val_set_size": 0.1,
                "special_tokens": {
                    "unk_token": "<unk>",
                    "bos_token": "<s>",
                    "eos_token": "</s>",
                },
                "datasets": [
                    {
                        "path": "mhenrichsen/alpaca_2k_test",
                        "type": "alpaca",
                    },
                ],
                "num_epochs": 2,
                "micro_batch_size": 8,
                "gradient_accumulation_steps": 1,
                "output_dir": output_dir,
                "learning_rate": 0.00001,
                "optimizer": "adamw_torch",
                "lr_scheduler": "cosine",
            }
        )
        normalize_config(cfg)
        cli_args = TrainerCliArgs()
        dataset_meta = load_datasets(cfg=cfg, cli_args=cli_args)

        train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta)
        assert (Path(output_dir) / "adapter_model.bin").exists()

    def test_lora_gptq(self):
        # pylint: disable=duplicate-code
        output_dir = tempfile.mkdtemp()
        cfg = DictDefault(
            {
                "base_model": "TheBlokeAI/jackfram_llama-68m-GPTQ",
                "base_model_config": "TheBlokeAI/jackfram_llama-68m-GPTQ",
                "model_type": "AutoModelForCausalLM",
                "tokenizer_type": "LlamaTokenizer",
                "sequence_len": 1024,
                "sample_packing": True,
                "flash_attention": True,
                "load_in_8bit": True,
                "adapter": "lora",
                "gptq": True,
                "gptq_disable_exllama": True,
                "lora_r": 32,
                "lora_alpha": 64,
                "lora_dropout": 0.05,
                "lora_target_linear": True,
                "val_set_size": 0.1,
                "special_tokens": {
                    "unk_token": "<unk>",
                    "bos_token": "<s>",
                    "eos_token": "</s>",
                },
                "datasets": [
                    {
                        "path": "mhenrichsen/alpaca_2k_test",
                        "type": "alpaca",
                    },
                ],
                "num_epochs": 2,
                "save_steps": 0.5,
                "micro_batch_size": 8,
                "gradient_accumulation_steps": 1,
                "output_dir": output_dir,
                "learning_rate": 0.00001,
                "optimizer": "adamw_torch",
                "lr_scheduler": "cosine",
            }
        )
        normalize_config(cfg)
        cli_args = TrainerCliArgs()
        dataset_meta = load_datasets(cfg=cfg, cli_args=cli_args)

        train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta)
        assert (Path(output_dir) / "adapter_model.bin").exists()