File size: 33,274 Bytes
5cb7ea4 2495909 3a2edc8 2495909 77c84e0 2495909 04a42b6 2495909 c25ba79 2495909 db73b94 2495909 db73b94 77c84e0 db73b94 afb31e1 db73b94 2495909 db73b94 5cb7ea4 3d1f203 a5a625f e9da4b9 ba9ac72 db73b94 2495909 58d6659 db73b94 d21318d db73b94 9845c5e 5e5296a cfff94b db73b94 85326bf 861ceca db73b94 ba9ac72 861ceca ba9ac72 db73b94 ba9ac72 e9da4b9 04d2813 77c84e0 04d2813 41a4d15 04d2813 34c0a86 04d2813 84169d1 77c84e0 04a42b6 04d2813 bdc4bd7 cf61f14 77c84e0 2b222de 9845c5e 5e5296a 2b222de 85b0be2 04d2813 77c84e0 ff68a95 2e13cef ff68a95 41a4d15 ff68a95 9845c5e 5e5296a ff68a95 919f4ca ff68a95 77c84e0 f51c9c5 04d2813 2495909 9aab0b8 04d2813 db73b94 e7d3e2d db73b94 e1a91b0 db73b94 857a80b c22df8d 857a80b c22df8d 857a80b c22df8d 857a80b c22df8d 7bc28eb f92245d 7bc28eb 5b33e29 1c38253 5b33e29 78a1e1f 5b33e29 409ca0f 5b33e29 1c38253 33e1890 f474650 e7d3e2d aac4b76 e7d3e2d 729c299 aac4b76 ba9ac72 db73b94 2097a09 04a42b6 2097a09 04a42b6 04d2813 04a42b6 590d603 2097a09 04d2813 cc7e800 04d2813 68237ea 04d2813 9e64f42 41da98b 04d2813 9e64f42 46032a1 8bba642 f7a2263 9e64f42 5ac3392 9e64f42 04a42b6 409ca0f 04d2813 a9e502e 04d2813 e65c203 04d2813 e65c203 d7635b7 88e17ff 04d2813 68237ea 04d2813 9083910 04d2813 0a472e1 77c84e0 04d2813 77c84e0 0a472e1 77c84e0 04d2813 77c84e0 896c1ae e3c494c 0a472e1 362821c 47d601f 47961fd 77c84e0 1066751 04d2813 77c84e0 19a600a 77c84e0 eb41f76 19a600a 77c84e0 dd00657 04d2813 77c84e0 0a472e1 77c84e0 a9e502e 04d2813 e65c203 04d2813 e65c203 04d2813 48c5647 77c84e0 0a472e1 77c84e0 0a472e1 9e64f42 00dce35 e7d3e2d db73b94 77c84e0 04a42b6 77c84e0 04a42b6 5855dde 04a42b6 5855dde 04a42b6 77c84e0 04a42b6 5855dde f7a2263 77c84e0 0a472e1 77c84e0 2b43668 9ec2077 c146880 165907f 73a0b6e 77c84e0 1c33eb8 be294fd 0a472e1 8626b54 04d2813 77c84e0 0a472e1 77c84e0 8e197f6 77c84e0 2bb0b78 0a472e1 77c84e0 2bb0b78 77c84e0 67b9888 77c84e0 2bb0b78 04d2813 77c84e0 04d2813 77c84e0 04d2813 77c84e0 0a472e1 04d2813 77c84e0 04d2813 77c84e0 c22df8d 0a472e1 04d2813 bde3c5a 77c84e0 bde3c5a 04d2813 7019509 77c84e0 0a472e1 77c84e0 7019509 04d2813 77c84e0 0a472e1 04d2813 77c84e0 a4e1bb6 77c84e0 c2a0792 77c84e0 0a472e1 2642cae 0a472e1 2b990eb 04d2813 77c84e0 41ecb45 04d2813 77c84e0 5b67ea9 77c84e0 5491278 77c84e0 0a472e1 77c84e0 0a472e1 04d2813 16f9e28 0a472e1 04d2813 77c84e0 0a472e1 05c1834 77c84e0 05c1834 77c84e0 05c1834 77c84e0 05c1834 77c84e0 6d57f2f 04d2813 77c84e0 04d2813 c969f0a 04d2813 3bd9528 77c84e0 eea2731 77c84e0 0a472e1 77c84e0 72fe3f8 895f0a0 77c84e0 2675fb7 55b8542 5878bb1 77c84e0 5878bb1 b521206 04d2813 77c84e0 0a472e1 77c84e0 0a472e1 04d2813 77c84e0 0a472e1 77c84e0 04d2813 77c84e0 2b43668 f2a2029 04d2813 12de7b7 77c84e0 04d2813 396a7a7 29273b5 04d2813 fae6ed8 04d2813 9083910 d7d8bc7 12de7b7 04d2813 0a472e1 77c84e0 04d2813 0a472e1 04d2813 861ceca 0a472e1 94d03c8 2bb0b78 94d03c8 861ceca 94d03c8 cf5ae6b 7019509 c25ba79 04d2813 8552218 04d2813 8552218 861ceca 8552218 861ceca 8552218 c4e4f81 861ceca c4e4f81 0a472e1 11c48c5 bc97f9c 04d2813 ba9ac72 861ceca ba9ac72 88e17ff 861ceca 88e17ff ba9ac72 2495909 5417824 3c71c8d 5417824 ba9ac72 04a42b6 2495909 1377400 e689069 b64f411 cf5ae6b 5e2d8a4 aac4b76 3f6017d e07bd8a b267d24 5ff547d 2495909 5ff547d ba9ac72 31db0ec 04d2813 bc97f9c afb31e1 b1cc54b afb31e1 b1cc54b afb31e1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 |
# Axolotl
Axolotl is a tool designed to streamline the fine-tuning of various AI models, offering support for multiple configurations and architectures.
Features:
- Train various Huggingface models such as llama, pythia, falcon, mpt
- Supports fullfinetune, lora, qlora, relora, and gptq
- Customize configurations using a simple yaml file or CLI overwrite
- Load different dataset formats, use custom formats, or bring your own tokenized datasets
- Integrated with xformer, flash attention, rope scaling, and multipacking
- Works with single GPU or multiple GPUs via FSDP or Deepspeed
- Easily run with Docker locally or on the cloud
- Log results and optionally checkpoints to wandb
- And more!
<table>
<tr>
<td>
## Table of Contents
- [Introduction](#axolotl)
- [Supported Features](#axolotl-supports)
- [Quickstart](#quickstart-)
- [Installation](#installation)
- [Docker](#docker)
- [Conda/Pip venv](#condapip-venv)
- [LambdaLabs](#lambdalabs)
- [Windows](#windows)
- [Dataset](#dataset)
- [How to Add Custom Prompts](#how-to-add-custom-prompts)
- [How to Use Custom Pretokenized Dataset](#how-to-use-your-custom-pretokenized-dataset)
- [Config](#config)
- [Train](#train)
- [Training w/ Deepspeed](#training-with-deepspeed)
- [Inference](#inference)
- [Merge LORA to Base](#merge-lora-to-base)
- [Common Errors](#common-errors-)
- [Need Help?](#need-help-)
- [Badge](#badge-)
- [Community Showcase](#community-showcase)
- [Contributing](#contributing-)
</td>
<td>
<div align="center">
<img src="image/axolotl.png" alt="axolotl" width="160">
<div>
<p>
<b>Axolotl provides a unified repository for fine-tuning <br />a variety of AI models with ease</b>
</p>
<p>
Go ahead and Axolotl questions!!
</p>
<img src="https://github.com/OpenAccess-AI-Collective/axolotl/actions/workflows/pre-commit.yml/badge.svg?branch=main" alt="pre-commit">
<img alt="PyTest Status" src="https://github.com/OpenAccess-AI-Collective/axolotl/actions/workflows/tests.yml/badge.svg?branch=main">
</div>
</div>
</td>
</tr>
</table>
## Axolotl supports
| | fp16/fp32 | lora | qlora | gptq | gptq w/flash attn | flash attn | xformers attn |
|----------|:----------|:-----|-------|------|-------------------|------------|--------------|
| llama | β
| β
| β
| β
| β
| β
| β
|
| Pythia | β
| β
| β
| β | β | β | β |
| cerebras | β
| β
| β
| β | β | β | β |
| btlm | β
| β
| β
| β | β | β | β |
| mpt | β
| β | β | β | β | β | β |
| falcon | β
| β
| β
| β | β | β | β |
| gpt-j | β
| β
| β
| β | β | β | β |
| XGen | β
| β | β
| β | β | β | β
|
| phi | β
| β
| β
| β | β | β | β |
## Quickstart β‘
Get started with Axolotl in just a few steps! This quickstart guide will walk you through setting up and running a basic fine-tuning task.
**Requirements**: Python >=3.9 and Pytorch >=2.0.
```bash
git clone https://github.com/OpenAccess-AI-Collective/axolotl
cd axolotl
pip3 install packaging
pip3 install -e '.[flash-attn,deepspeed]'
pip3 install -U git+https://github.com/huggingface/peft.git
# finetune lora
accelerate launch -m axolotl.cli.train examples/openllama-3b/lora.yml
# inference
accelerate launch -m axolotl.cli.inference examples/openllama-3b/lora.yml \
--lora_model_dir="./lora-out"
```
## Installation
### Environment
#### Docker
```bash
docker run --gpus '"all"' --rm -it winglian/axolotl:main-py3.10-cu118-2.0.1
```
- `winglian/axolotl-runpod:main-latest`: for runpod or use this [direct link](https://runpod.io/gsc?template=v2ickqhz9s&ref=6i7fkpdz)
Or run on the current files for development:
```sh
docker compose up -d
```
#### Conda/Pip venv
1. Install python >=**3.9**
2. Install pytorch stable https://pytorch.org/get-started/locally/
3. Install Axolotl along with python dependencies
```bash
pip3 install packaging
pip3 install -e '.[flash-attn,deepspeed]'
```
4. (Optional) Login to Huggingface to use gated models/datasets.
```bash
huggingface-cli login
```
Get the token at huggingface.co/settings/tokens
#### LambdaLabs
<details>
<summary>Click to Expand</summary>
1. Install python
```bash
sudo apt update
sudo apt install -y python3.9
sudo update-alternatives --install /usr/bin/python python /usr/bin/python3.9 1
sudo update-alternatives --config python # pick 3.9 if given option
python -V # should be 3.9
```
2. Install pip
```bash
wget https://bootstrap.pypa.io/get-pip.py
python get-pip.py
```
3. Install torch
```bash
pip3 install -U torch --index-url https://download.pytorch.org/whl/cu118
```
4. Axolotl
```bash
git clone https://github.com/OpenAccess-AI-Collective/axolotl
cd axolotl
pip3 install packaging
pip3 install -e '.[flash-attn,deepspeed]'
pip3 install protobuf==3.20.3
pip3 install -U --ignore-installed requests Pillow psutil scipy
```
5. Set path
```bash
export LD_LIBRARY_PATH=/usr/lib/x86_64-linux-gnu:$LD_LIBRARY_PATH
```
</details>
#### Windows
Please use WSL or Docker!
### Dataset
Axolotl supports a variety of dataset formats. Below are some of the formats you can use.
Have dataset(s) in one of the following format (JSONL recommended):
- `alpaca`: instruction; input(optional)
```json
{"instruction": "...", "input": "...", "output": "..."}
```
- `sharegpt`: conversations where `from` is `human`/`gpt`
```json
{"conversations": [{"from": "...", "value": "..."}]}
```
- `completion`: raw corpus
```json
{"text": "..."}
```
<details>
<summary>See other formats</summary>
- `jeopardy`: question and answer
```json
{"question": "...", "category": "...", "answer": "..."}
```
- `oasst`: instruction
```json
{"INSTRUCTION": "...", "RESPONSE": "..."}
```
- `gpteacher`: instruction; input(optional)
```json
{"instruction": "...", "input": "...", "response": "..."}
```
- `reflection`: instruction with reflect; input(optional)
```json
{"instruction": "...", "input": "...", "output": "...", "reflection": "...", "corrected": "..."}
```
- `explainchoice`: question, choices, (solution OR explanation)
```json
{"question": "...", "choices": ["..."], "solution": "...", "explanation": "..."}
```
- `concisechoice`: question, choices, (solution OR explanation)
```json
{"question": "...", "choices": ["..."], "solution": "...", "explanation": "..."}
```
- `summarizetldr`: article and summary
```json
{"article": "...", "summary": "..."}
```
- `alpaca_chat`: basic instruct for alpaca chat
```json
{"instruction": "...", "input": "...", "response": "..."}
```
- `alpaca_chat.load_qa`: question and answer for alpaca chat
```json
{"question": "...", "answer": "..."}
```
- `alpaca_chat.load_concise`: question and answer for alpaca chat, for concise answers
```json
{"instruction": "...", "input": "...", "response": "..."}
```
- `alpaca_chat.load_camel_ai`: question and answer for alpaca chat, for load_camel_ai
```json
{"message_1": "...", "message_2": "..."}
```
- `alpaca_w_system.load_open_orca`: support for open orca datasets with included system prompts, instruct
```json
{"system_prompt": "...", "question": "...", "response": "..."}
```
- `context_qa`: in context question answering from an article
```json
{"article": "...", "question": "...", "answer": "..."}
```
- `context_qa.load_v2`: in context question answering (alternate)
```json
{"context": "...", "question": "...", "answer": "..."}
```
- `context_qa.load_404`: in context question answering from an article, with default response for no answer from context
```json
{"article": "...", "unanswerable_question": "..."}
```
- `creative_acr.load_answer`: instruction and revision
```json
{"instruction": "...", "revision": "..."}
```
- `creative_acr.load_critique`: critique
```json
{"scores": "...", "critiques": "...", "instruction": "...", "answer": "..."}
```
- `creative_acr.load_revise`: critique and revise
```json
{"scores": "...", "critiques": "...", "instruction": "...", "answer": "...", "revision": "..."}
```
- `pygmalion`: pygmalion
```json
{"conversations": [{"role": "...", "value": "..."}]}
```
- `metharme`: instruction, adds additional eos tokens
```json
{"prompt": "...", "generation": "..."}
```
- `sharegpt.load_role`: conversations where `role` is used instead of `from`
```json
{"conversations": [{"role": "...", "value": "..."}]}
```
- `sharegpt.load_guanaco`: conversations where `from` is `prompter`/`assistant` instead of default sharegpt
```json
{"conversations": [{"from": "...", "value": "..."}]}
```
- `sharegpt_jokes`: creates a chat where bot is asked to tell a joke, then explain why the joke is funny
```json
{"conversations": [{"title": "...", "text": "...", "explanation": "..."}]}
```
</details>
#### How to add custom prompts
Using yaml. Example:
```yaml
datasets:
- path: repo
type:
system_prompt: ""
no_input_format: |-
User: {instruction}<|end_of_turn|>
Assistant:
format: |-
User: {instruction}
{input}<|end_of_turn|>
Assistant:
```
Using file:
1. Add your method to a file in [prompt_strategies](src/axolotl/prompt_strategies). Please see other files as example.
2. Use your custom file name as the dataset type `<prompt_strategies_file>.load_<load_fn>`.
#### How to use your custom pretokenized dataset
- Do not pass a `type:`
- Columns in Dataset must be exactly `input_ids`, `attention_mask`, `labels`
### Config
See [examples](examples) for quick start. It is recommended to duplicate and modify to your needs. The most important options are:
- model
```yaml
base_model: ./llama-7b-hf # local or huggingface repo
```
Note: The code will load the right architecture.
- dataset
```yaml
sequence_len: 2048 # max token length for prompt
# huggingface repo
datasets:
- path: vicgalle/alpaca-gpt4
type: alpaca # format from earlier
# huggingface repo with specific configuration/subset
datasets:
- path: EleutherAI/pile
name: enron_emails
type: completion # format from earlier
field: text # Optional[str] default: text, field to use for completion data
# huggingface repo with multiple named configurations/subsets
datasets:
- path: bigcode/commitpackft
name:
- ruby
- python
- typescript
type: ... # unimplemented custom format
# local
datasets:
- path: data.jsonl # or json
ds_type: json # see other options below
type: alpaca
# dataset with splits, but no train split
dataset:
- path: knowrohit07/know_sql
type: context_qa.load_v2
train_on_split: validation
```
- loading
```yaml
load_in_4bit: true
load_in_8bit: true
bf16: true # require >=ampere
fp16: true
tf32: true # require >=ampere
bfloat16: true # require >=ampere, use instead of bf16 when you don't want AMP (automatic mixed precision)
float16: true # use instead of fp16 when you don't want AMP
```
Note: Repo does not do 4-bit quantization.
- lora
```yaml
adapter: lora # qlora or leave blank for full finetune
lora_r: 8
lora_alpha: 16
lora_dropout: 0.05
lora_target_modules:
- q_proj
- v_proj
```
<details>
<summary>All yaml options</summary>
```yaml
# This is the huggingface model that contains *.pt, *.safetensors, or *.bin files
# This can also be a relative path to a model on disk
base_model: ./llama-7b-hf
# You can specify an ignore pattern if the model repo contains more than 1 model type (*.pt, etc)
base_model_ignore_patterns:
# If the base_model repo on hf hub doesn't include configuration .json files,
# You can set that here, or leave this empty to default to base_model
base_model_config: ./llama-7b-hf
# You can specify to choose a specific model revision from huggingface hub
model_revision:
# Optional tokenizer configuration override in case you want to use a different tokenizer
# than the one defined in the base model
tokenizer_config:
# If you want to specify the type of model to load, AutoModelForCausalLM is a good choice too
model_type: AutoModelForCausalLM
# Corresponding tokenizer for the model AutoTokenizer is a good choice
tokenizer_type: AutoTokenizer
# Trust remote code for untrusted source
trust_remote_code:
# use_fast option for tokenizer loading from_pretrained, default to True
tokenizer_use_fast:
# Whether to use the legacy tokenizer setting, defaults to True
tokenizer_legacy:
# Resize the model embeddings when new tokens are added to multiples of 32
# This is reported to improve training speed on some models
resize_token_embeddings_to_32x:
# Used to identify which the model is based on
is_falcon_derived_model:
is_llama_derived_model:
# Please note that if you set this to true, `padding_side` will be set to "left" by default
is_mistral_derived_model:
# Whether you are training a 4-bit GPTQ quantized model
gptq: true
gptq_groupsize: 128 # group size
gptq_model_v1: false # v1 or v2
# This will attempt to quantize the model down to 8 bits and use adam 8 bit optimizer
load_in_8bit: true
# Use bitsandbytes 4 bit
load_in_4bit:
# Use CUDA bf16
bf16: true # bool or 'full' for `bf16_full_eval`. require >=ampere
# Use CUDA fp16
fp16: true
# Use CUDA tf32
tf32: true # require >=ampere
# No AMP (automatic mixed precision)
bfloat16: true # require >=ampere
float16: true
# A list of one or more datasets to finetune the model with
datasets:
# HuggingFace dataset repo | "json" for local dataset, make sure to fill data_files
- path: vicgalle/alpaca-gpt4
# The type of prompt to use for training. [alpaca, sharegpt, gpteacher, oasst, reflection]
type: alpaca # format | format:<prompt_style> (chat/instruct) | <prompt_strategies>.load_<load_fn>
ds_type: # Optional[str] (json|arrow|parquet|text|csv) defines the datatype when path is a file
data_files: # Optional[str] path to source data files
shards: # Optional[int] number of shards to split data into
name: # Optional[str] name of dataset configuration to load
conversation: # Optional[str] fastchat conversation type, only used with type: sharegpt
# Custom user prompt
- path: repo
type:
# The below are defaults. only set what's needed.
system_prompt: ""
system_format: "{system}"
field_system: system
field_instruction: instruction
field_input: input
field_output: output
# Customizable to be single line or multi-line
# 'format' can include {input}
format: |-
User: {instruction} {input}
Assistant:
# 'no_input_format' cannot include {input}
no_input_format: "{instruction} "
# For `completion` datsets only, uses the provided field instead of `text` column
field:
# Axolotl attempts to save the dataset as an arrow after packing the data together so
# subsequent training attempts load faster, relative path
dataset_prepared_path: data/last_run_prepared
# Push prepared dataset to hub
push_dataset_to_hub: # repo path
# The maximum number of processes to use while preprocessing your input dataset. This defaults to `os.cpu_count()`
# if not set.
dataset_processes: # defaults to os.cpu_count() if not set
# push checkpoints to hub
hub_model_id: # repo path to push finetuned model
# how to push checkpoints to hub
# https://huggingface.co/docs/transformers/v4.31.0/en/main_classes/trainer#transformers.TrainingArguments.hub_strategy
hub_strategy:
# Whether to use hf `use_auth_token` for loading datasets. Useful for fetching private datasets
# Required to be true when used in combination with `push_dataset_to_hub`
hf_use_auth_token: # boolean
# How much of the dataset to set aside as evaluation. 1 = 100%, 0.50 = 50%, etc. 0 for no eval.
val_set_size: 0.04
# Num shards for whole dataset
dataset_shard_num:
# Index of shard to use for whole dataset
dataset_shard_idx:
# The maximum length of an input to train with, this should typically be less than 2048
# as most models have a token/context limit of 2048
sequence_len: 2048
# Pad inputs so each step uses constant sized buffers
# This will reduce memory fragmentation and may prevent OOMs, by re-using memory more efficiently
pad_to_sequence_len:
# Max sequence length to concatenate training samples together up to
# Inspired by StackLLaMA. see https://huggingface.co/blog/stackllama#supervised-fine-tuning
# FutureWarning: This will soon be DEPRECATED
max_packed_sequence_len: 1024
# Use efficient multi-packing with block diagonal attention and per sequence position_ids. Recommend set to 'true'
sample_packing:
# Set to 'false' if getting errors during eval with sample_packing on.
eval_sample_packing:
# You can set these packing optimizations AFTER starting a training at least once.
# The trainer will provide recommended values for these values.
sample_packing_eff_est:
total_num_tokens:
# If you want to use 'lora' or 'qlora' or leave blank to train all parameters in original model
adapter: lora
# If you already have a lora model trained that you want to load, put that here.
# This means after training, if you want to test the model, you should set this to the value of `lora_out_dir`.
lora_model_dir:
# LoRA hyperparameters
# For more details about the following options, see:
# https://www.anyscale.com/blog/fine-tuning-llms-lora-or-full-parameter-an-in-depth-analysis-with-llama-2
lora_r: 8
lora_alpha: 16
lora_dropout: 0.05
lora_target_modules:
- q_proj
- v_proj
# - k_proj
# - o_proj
# - gate_proj
# - down_proj
# - up_proj
lora_target_linear: # If true, will target all linear layers
# If you added new tokens to the tokenizer, you may need to save some LoRA modules because they need to know the new tokens.
# For LLaMA and Mistral, you need to save `embed_tokens` and `lm_head`. It may vary for other models.
# `embed_tokens` converts tokens to embeddings, and `lm_head` converts embeddings to token probabilities.
# https://github.com/huggingface/peft/issues/334#issuecomment-1561727994
lora_modules_to_save:
# - embed_tokens
# - lm_head
# Once you complete training, the model will be saved to the following directory.
# If you merge the adapter to the base model, a subdirectory `merged` will be created under this directory.
# Make sure `lora_model_dir` points to this directory if you want to use the trained model.
lora_out_dir:
lora_fan_in_fan_out: false
# ReLoRA configuration
# Must use either 'lora' or 'qlora' adapter, and does not support fsdp or deepspeed
relora_steps: # Number of steps per ReLoRA restart
relora_warmup_steps: # Number of per-restart warmup steps
relora_cpu_offload: # True to perform lora weight merges on cpu during restarts, for modest gpu memory savings
# wandb configuration if you're using it
wandb_mode: # "offline" to save run metadata locally and not sync to the server, "disabled" to turn off wandb
wandb_project: # Your wandb project name
wandb_entity: # A wandb Team name if using a Team
wandb_watch:
wandb_run_id: # Set the name of your wandb run
wandb_log_model: # "checkpoint" to log model to wandb Artifacts every `save_steps` or "end" to log only at the end of training
# Where to save the full-finetuned model to
output_dir: ./completed-model
# Whether to use torch.compile and which backend to use
torch_compile: # bool
torch_compile_backend: # Optional[str]
# Training hyperparameters
# If greater than 1, backpropagation will be skipped and the gradients will be accumulated for the given number of steps.
gradient_accumulation_steps: 1
# The number of samples to include in each batch. This is the number of samples sent to each GPU.
micro_batch_size: 2
eval_batch_size:
num_epochs: 3
warmup_steps: 100
learning_rate: 0.00003
lr_quadratic_warmup:
logging_steps:
save_strategy: # Set to `no` to skip checkpoint saves
save_steps: # Leave empty to save at each epoch
eval_steps: # Leave empty to eval at each epoch
save_total_limit: # Checkpoints saved at a time
# Maximum number of iterations to train for. It precedes num_epochs which means that
# if both are set, num_epochs will not be guaranteed.
# e.g., when 1 epoch is 1000 steps => `num_epochs: 2` and `max_steps: 100` will train for 100 steps
max_steps:
eval_table_size: # Approximate number of predictions sent to wandb depending on batch size. Enabled above 0. Default is 0
eval_table_max_new_tokens: # Total number of tokens generated for predictions sent to wandb. Default is 128
# Save model as safetensors (require safetensors package)
save_safetensors:
# Whether to mask out or include the human's prompt from the training labels
train_on_inputs: false
# Group similarly sized data to minimize padding.
# May be slower to start, as it must download and sort the entire dataset.
# Note that training loss may have an oscillating pattern with this enabled.
group_by_length: false
# Whether to use gradient checkpointing https://huggingface.co/docs/transformers/v4.18.0/en/performance#gradient-checkpointing
gradient_checkpointing: false
# Stop training after this many evaluation losses have increased in a row
# https://huggingface.co/transformers/v4.2.2/_modules/transformers/trainer_callback.html#EarlyStoppingCallback
early_stopping_patience: 3
# Specify a scheduler and kwargs to use with the optimizer
lr_scheduler: # 'one_cycle' | 'log_sweep' | empty for cosine
lr_scheduler_kwargs:
# For one_cycle optim
lr_div_factor: # Learning rate div factor
# For log_sweep optim
log_sweep_min_lr:
log_sweep_max_lr:
# Specify optimizer
# Valid values are driven by the Transformers OptimizerNames class, see:
# https://github.com/huggingface/transformers/blob/95b374952dc27d8511541d6f5a4e22c9ec11fb24/src/transformers/training_args.py#L134
#
# Note that not all optimizers may be available in your environment, ex: 'adamw_anyprecision' is part of
# torchdistx, 'adamw_bnb_8bit' is part of bnb.optim.Adam8bit, etc. When in doubt, it is recommended to start with the optimizer used
# in the examples/ for your model and fine-tuning use case.
#
# Valid values for 'optimizer' include:
# - adamw_hf
# - adamw_torch
# - adamw_torch_fused
# - adamw_torch_xla
# - adamw_apex_fused
# - adafactor
# - adamw_anyprecision
# - sgd
# - adagrad
# - adamw_bnb_8bit
# - lion_8bit
# - lion_32bit
# - paged_adamw_32bit
# - paged_adamw_8bit
# - paged_lion_32bit
# - paged_lion_8bit
optimizer:
# Specify weight decay
weight_decay:
# adamw hyperparams
adam_beta1:
adam_beta2:
adam_epsilon:
# Gradient clipping max norm
max_grad_norm:
# Augmentation techniques
# NEFT https://arxiv.org/abs/2310.05914, set this to a number (paper default is 5) to add noise to embeddings
# currently only supported on Llama and Mistral
noisy_embedding_alpha:
# Whether to bettertransformers
flash_optimum:
# Whether to use xformers attention patch https://github.com/facebookresearch/xformers:
xformers_attention:
# Whether to use flash attention patch https://github.com/Dao-AILab/flash-attention:
flash_attention:
flash_attn_cross_entropy: # Whether to use flash-attention cross entropy implementation - advanced use only
flash_attn_rms_norm: # Whether to use flash-attention rms norm implementation - advanced use only
# Whether to use scaled-dot-product attention
# https://pytorch.org/docs/stable/generated/torch.nn.functional.scaled_dot_product_attention.html
sdp_attention:
# Landmark attention (only llama)
landmark_attention:
# xpos RoPE see https://github.com/kaiokendev/cutoff-len-is-context-len/blob/main/util/xpos_rope_llama_monkey_patch.py
# LLaMA only
xpos_rope:
# RoPE Scaling https://github.com/huggingface/transformers/pull/24653
rope_scaling:
type: # linear | dynamic
factor: # float
# Resume from a specific checkpoint dir
resume_from_checkpoint:
# If resume_from_checkpoint isn't set and you simply want it to start where it left off.
# Be careful with this being turned on between different models.
auto_resume_from_checkpoints: false
# Don't mess with this, it's here for accelerate and torchrun
local_rank:
# Add or change special tokens.
# If you add tokens here, you don't need to add them to the `tokens` list.
special_tokens:
# bos_token: "<s>"
# eos_token: "</s>"
# unk_token: "<unk>"
# Add extra tokens.
tokens:
# FSDP
fsdp:
fsdp_config:
# Deepspeed config path. e.g., deepspeed/zero3.json
deepspeed:
# Advanced DDP Arguments
ddp_timeout:
ddp_bucket_cap_mb:
ddp_broadcast_buffers:
# Path to torch distx for optim 'adamw_anyprecision'
torchdistx_path:
# Set to HF dataset for type: 'completion' for streaming instead of pre-tokenize
pretraining_dataset:
# Debug mode
debug:
# Seed
seed:
# Allow overwrite yml config using from cli
strict:
```
</details>
<details>
<summary> Understanding of batch size and gradient accumulation steps </summary>
<br/>
Gradient accumulation means accumulating gradients over several mini-batches and updating the model weights afterward. When the samples in each batch are diverse, this technique doesn't significantly impact learning.
This method allows for effective training with larger effective batch sizes without needing proportionally larger memory. Here's why:
1. **Memory Consumption with Batch Size**: The primary reason increasing the batch size impacts memory is due to the storage requirements for intermediate activations. When you forward propagate a batch through a network, you have to store the activations at each layer for each sample in the batch, because these activations are used during backpropagation to compute gradients. Therefore, larger batches mean more activations, leading to greater GPU memory consumption.
2. **Gradient Accumulation**: With gradient accumulation, you're effectively simulating a larger batch size by accumulating gradients over several smaller batches (or micro-batches). However, at any given time, you're only forward and backward propagating a micro-batch. This means you only store activations for the micro-batch, not the full accumulated batch. As a result, you can simulate the effect of a larger batch size without the memory cost of storing activations for a large batch.
**Example 1:**
Micro batch size: 3
Gradient accumulation steps: 2
Number of GPUs: 3
Total batch size = 3 * 2 * 3 = 18
```
| GPU 1 | GPU 2 | GPU 3 |
|----------------|----------------|----------------|
| S1, S2, S3 | S4, S5, S6 | S7, S8, S9 |
| e1, e2, e3 | e4, e5, e6 | e7, e8, e9 |
|----------------|----------------|----------------|
| β (accumulate) | β (accumulate) | β (accumulate) |
|----------------|----------------|----------------|
| S10, S11, S12 | S13, S14, S15 | S16, S17, S18 |
| e10, e11, e12 | e13, e14, e15 | e16, e17, e18 |
|----------------|----------------|----------------|
| β (apply) | β (apply) | β (apply) |
Accumulated gradient for the weight w1 after the second iteration (considering all GPUs):
Total gradient for w1 = e1 + e2 + e3 + e4 + e5 + e6 + e7 + e8 + e9 + e10 + e11 + e12 + e13 + e14 + e15 + e16 + e17 + e18
Weight update for w1:
w1_new = w1_old - learning rate x (Total gradient for w1 / 18)
```
**Example 2:**
Micro batch size: 2
Gradient accumulation steps: 1
Number of GPUs: 3
Total batch size = 2 * 1 * 3 = 6
```
| GPU 1 | GPU 2 | GPU 3 |
|-----------|-----------|-----------|
| S1, S2 | S3, S4 | S5, S6 |
| e1, e2 | e3, e4 | e5, e6 |
|-----------|-----------|-----------|
| β (apply) | β (apply) | β (apply) |
Accumulated gradient for the weight w1 (considering all GPUs):
Total gradient for w1 = e1 + e2 + e3 + e4 + e5 + e6
Weight update for w1:
w1_new = w1_old - learning rate Γ (Total gradient for w1 / 6)
```
</details>
### Train
Run
```bash
accelerate launch -m axolotl.cli.train your_config.yml
```
#### Multi-GPU
You can optionally pre-tokenize dataset with the following before finetuning:
```bash
CUDA_VISIBLE_DEVICES="" accelerate launch -m axolotl.cli.train your_config.yml --prepare_ds_only
```
##### Config
- llama FSDP
```yaml
fsdp:
- full_shard
- auto_wrap
fsdp_config:
fsdp_offload_params: true
fsdp_state_dict_type: FULL_STATE_DICT
fsdp_transformer_layer_cls_to_wrap: LlamaDecoderLayer
```
##### Weights & Biases Logging
- wandb options
```yaml
wandb_mode:
wandb_project:
wandb_entity:
wandb_watch:
wandb_run_id:
wandb_log_model:
```
### Training with Deepspeed
Deepspeed is an optimization suite for multi-gpu systems allowing you to train much larger models than you
might typically be able to fit into your GPU's VRAM. More information about the various optimization types
for deepspeed is available at https://huggingface.co/docs/accelerate/main/en/usage_guides/deepspeed#what-is-integrated
We provide several default deepspeed JSON configurations for ZeRO stage 1, 2, and 3.
```shell
accelerate launch -m axolotl.cli.train examples/llama-2/config.py --deepspeed deepspeed/zero1.json
```
or
```yaml
deepspeed: deepspeed/zero1.json
```
### Inference
Pass the appropriate flag to the train command:
- Pretrained LORA:
```bash
python -m axolotl.cli.inference examples/your_config.yml --lora_model_dir="./lora-output-dir"
```
- Full weights finetune:
```bash
python -m axolotl.cli.inference examples/your_config.yml --base_model="./completed-model"
```
- Full weights finetune w/ a prompt from a text file:
```bash
cat /tmp/prompt.txt | python -m axolotl.cli.inference examples/your_config.yml \
--base_model="./completed-model" --prompter=None --load_in_8bit=True
```
Please use `--sample_packing False` if you have it on and receive the error similar to below:
> RuntimeError: stack expects each tensor to be equal size, but got [1, 32, 1, 128] at entry 0 and [1, 32, 8, 128] at entry 1
### Merge LORA to base
Add below flag to train command above
```bash
python3 -m axolotl.cli.merge_lora examples/your_config.yml --lora_model_dir="./completed-model" --load_in_8bit=False --load_in_4bit=False
```
If you run out of CUDA memory, you can try to merge in system RAM with
```bash
CUDA_VISIBLE_DEVICES="" python3 -m axolotl.cli.merge_lora ...
```
## Common Errors π§°
> If you encounter a 'Cuda out of memory' error, it means your GPU ran out of memory during the training process. Here's how to resolve it:
Please reduce any below
- `micro_batch_size`
- `eval_batch_size`
- `gradient_accumulation_steps`
- `sequence_len`
> `failed (exitcode: -9)`
Usually means your system has run out of system memory.
Similarly, you should consider reducing the same settings as when you run out of VRAM.
Additionally, look into upgrading your system RAM which should be simpler than GPU upgrades.
> RuntimeError: expected scalar type Float but found Half
Try set `fp16: true`
> NotImplementedError: No operator found for `memory_efficient_attention_forward` ...
Try to turn off xformers.
> accelerate config missing
It's safe to ignore it.
> NCCL Timeouts during training
See the [NCCL](docs/nccl.md) guide.
## Need help? πβοΈ
Join our [Discord server](https://discord.gg/HhrNrHJPRb) where we can help you
## Badge β€π·οΈ
Building something cool with Axolotl? Consider adding a badge to your model card.
```markdown
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
```
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
## Community Showcase
Check out some of the projects and models that have been built using Axolotl! Have a model you'd like to add to our Community Showcase? Open a PR with your model.
Open Access AI Collective
- [Minotaur 13b](https://huggingface.co/openaccess-ai-collective/minotaur-13b)
- [Manticore 13b](https://huggingface.co/openaccess-ai-collective/manticore-13b)
- [Hippogriff 30b](https://huggingface.co/openaccess-ai-collective/hippogriff-30b-chat)
PocketDoc Labs
- [Dan's PersonalityEngine 13b LoRA](https://huggingface.co/PocketDoc/Dans-PersonalityEngine-13b-LoRA)
## Contributing π€
Please read the [contributing guide](./.github/CONTRIBUTING.md)
Bugs? Please check the [open issues](https://github.com/OpenAccess-AI-Collective/axolotl/issues/bug) else create a new Issue.
PRs are **greatly welcome**!
Please run below to setup env
```bash
pip3 install -r requirements-dev.txt -r requirements-tests.txt
pre-commit install
# test
pytest tests/
```
|