File size: 7,658 Bytes
fe1f4c4 7dc580b fe1f4c4 7dc580b 9105935 fe1f4c4 9105935 fe1f4c4 9105935 a10a826 9105935 2bc1a5b 9105935 a10a826 9105935 a10a826 7dc580b 8430db2 7dc580b 04b978b 8430db2 04b978b 8430db2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
"""Module for custom LRScheduler class"""
import math
from functools import partial
from torch.optim import Optimizer
from torch.optim.lr_scheduler import LambdaLR, LRScheduler
class InterpolatingLogScheduler(LRScheduler):
"""
A scheduler that interpolates learning rates in a logarithmic fashion
"""
def __init__(self, optimizer, num_steps, min_lr, max_lr, last_epoch=-1):
"""A scheduler that interpolates learning rates in a logarithmic fashion
Args:
- optimizer: pytorch optimizer
- num_steps: int, the number of steps over which to increase from the min_lr to the max_lr
- min_lr: float, the minimum learning rate
- max_lr: float, the maximum learning rate
Usage:
fc = nn.Linear(1,1)
optimizer = optim.Adam(fc.parameters())
lr_scheduler = InterpolatingLogScheduler(optimizer, num_steps=400, min_lr=1e-6, max_lr=1e-4)
"""
self.num_steps = num_steps
self.min_lr = min_lr
self.max_lr = max_lr
self.q = (max_lr / min_lr) ** ( # pylint: disable=invalid-name
1 / (num_steps - 1)
)
super().__init__(optimizer, last_epoch)
def get_lr(self):
if self.last_epoch <= 0:
lrs = [self.min_lr for base_lr in self.base_lrs]
elif self.last_epoch < self.num_steps:
lrs = [
self.min_lr * (self.q ** (self.last_epoch - 1))
for base_lr in self.base_lrs
]
else:
lrs = [self.max_lr for base_lr in self.base_lrs]
return lrs
def _get_cosine_schedule_with_quadratic_warmup_lr_lambda(
current_step: int,
*,
num_warmup_steps: int,
num_training_steps: int,
num_cycles: float,
):
if current_step < num_warmup_steps:
return (float(current_step) / float(max(1, num_warmup_steps))) ** 2
progress = float(current_step - num_warmup_steps) / float(
max(1, num_training_steps - num_warmup_steps)
)
return max(
0.0, 0.5 * (1.0 + math.cos(math.pi * float(num_cycles) * 2.0 * progress))
)
def get_cosine_schedule_with_quadratic_warmup(
optimizer: Optimizer,
num_warmup_steps: int,
num_training_steps: int,
num_cycles: float = 0.5,
last_epoch: int = -1,
):
"""
Create a schedule with a learning rate that decreases following the values of the cosine function between the
initial lr set in the optimizer to 0, after a warmup period during which it increases linearly between 0 and the
initial lr set in the optimizer.
Args:
optimizer ([`~torch.optim.Optimizer`]):
The optimizer for which to schedule the learning rate.
num_warmup_steps (`int`):
The number of steps for the warmup phase.
num_training_steps (`int`):
The total number of training steps.
num_cycles (`float`, *optional*, defaults to 0.5):
The number of waves in the cosine schedule (the defaults is to just decrease from the max value to 0
following a half-cosine).
last_epoch (`int`, *optional*, defaults to -1):
The index of the last epoch when resuming training.
Return:
`torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule.
"""
lr_lambda = partial(
_get_cosine_schedule_with_quadratic_warmup_lr_lambda,
num_warmup_steps=num_warmup_steps,
num_training_steps=num_training_steps,
num_cycles=num_cycles,
)
return LambdaLR(optimizer, lr_lambda, last_epoch)
def _get_cosine_schedule_with_min_lr_lambda(
current_step: int,
*,
num_warmup_steps: int,
num_training_steps: int,
min_lr_ratio: float,
):
# Warm up
if current_step < num_warmup_steps:
return float(current_step) / float(max(1, num_warmup_steps))
# Cosine learning rate decay
progress = float(current_step - num_warmup_steps) / float(
max(1, num_training_steps - num_warmup_steps)
)
scaling = 0.5 * (1.0 + math.cos(math.pi * progress))
return (1 - min_lr_ratio) * scaling + min_lr_ratio
def get_cosine_schedule_with_min_lr(
optimizer: Optimizer,
num_warmup_steps: int,
num_training_steps: int,
min_lr_ratio: float = 0.0,
):
"""
Create a learning rate schedule which has:
- linear warmup from 0 -> `max_lr` over `num_warmup_steps`
- cosine learning rate annealing from `max_lr` -> `min_lr` over `num_training_steps`
"""
lr_lambda = partial(
_get_cosine_schedule_with_min_lr_lambda,
num_warmup_steps=num_warmup_steps,
num_training_steps=num_training_steps,
min_lr_ratio=min_lr_ratio,
)
return LambdaLR(optimizer, lr_lambda)
def _get_cosine_schedule_with_warmup_decay_constant_lr_lambda(
current_step: int,
*,
num_warmup_steps: int,
num_training_steps: int,
constant_lr_ratio: float,
min_lr_ratio: float,
num_cycles: float,
):
if current_step < num_warmup_steps:
return float(current_step) / float(max(1, num_warmup_steps))
num_constant_steps = int(num_training_steps * constant_lr_ratio)
current_step = min(current_step, num_constant_steps)
progress = float(current_step - num_warmup_steps) / float(
max(1, num_constant_steps - num_warmup_steps)
)
return (
max(
0,
(1 - min_lr_ratio)
* 0.5
* (1.0 + math.cos(math.pi * float(num_cycles) * 2.0 * progress)),
)
+ min_lr_ratio
)
def get_cosine_schedule_with_warmup_decay_constant(
optimizer: Optimizer,
num_warmup_steps: int,
num_training_steps: int,
constant_lr_ratio: float,
min_lr_ratio: float,
num_cycles: float = 0.5,
last_epoch: int = -1,
):
"""
Implementation of Continual Pre-Training of Large Language Models: How to (re)warm your model? (https://arxiv.org/pdf/2308.04014.pdf)
Create a schedule with a learning rate that decreases following the values of the cosine function between the
initial lr set in the optimizer to min_lr_ratio until num_training_steps * constant_lr_ratio, after constant_rate returns constant value of min_rate
, after a warmup period during which it increases linearly between 0 and the initial lr set in the optimizer.
Args:
optimizer ([`~torch.optim.Optimizer`]):
The optimizer for which to schedule the learning rate.
num_warmup_steps (`int`):
The number of steps for the warmup phase.
num_training_steps (`int`):
The total number of training steps.
constant_lr_ratio: (`float`):
The ratio of num_training_steps to decrease by cosine function.
min_lr_ratio: (`float):
The ratio of maximum learning rate for cosine function to decay to minimum learning rate.
num_cycles (`float`, *optional*, defaults to 0.5):
The number of waves in the cosine schedule (the defaults is to just decrease from the max value to 0
following a half-cosine).
last_epoch (`int`, *optional*, defaults to -1):
The index of the last epoch when resuming training.
Return:
`torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule.
"""
lr_lambda = partial(
_get_cosine_schedule_with_warmup_decay_constant_lr_lambda,
num_warmup_steps=num_warmup_steps,
num_training_steps=num_training_steps,
constant_lr_ratio=constant_lr_ratio,
min_lr_ratio=min_lr_ratio,
num_cycles=num_cycles,
)
return LambdaLR(optimizer, lr_lambda, last_epoch)
|