File size: 17,431 Bytes
5cb7ea4
 
db73b94
 
 
 
 
 
 
 
 
afb31e1
 
db73b94
 
 
 
5cb7ea4
d0d7eaa
 
336aa3f
d0d7eaa
 
 
 
 
e9da4b9
 
ba9ac72
db73b94
cf61f14
db73b94
 
 
 
48612f8
cfff94b
db73b94
 
 
85326bf
52cde69
db73b94
ba9ac72
52cde69
85326bf
ba9ac72
db73b94
ba9ac72
e9da4b9
04d2813
 
3f6017d
04d2813
618816d
04d2813
618816d
2b222de
618816d
04d2813
84169d1
 
 
 
 
 
04d2813
cba0048
04d2813
bdc4bd7
cf61f14
 
2b222de
 
 
cfff94b
2b222de
 
 
 
 
 
 
 
 
04d2813
ff68a95
 
 
 
 
 
 
2e13cef
 
ff68a95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
04d2813
 
9aab0b8
04d2813
db73b94
 
 
 
3513885
db73b94
 
 
 
 
 
 
 
 
 
e1a91b0
db73b94
857a80b
c22df8d
 
 
857a80b
c22df8d
 
 
857a80b
c22df8d
 
 
857a80b
c22df8d
 
 
7bc28eb
 
 
 
 
 
 
f92245d
7bc28eb
 
 
 
5b33e29
 
 
 
1c38253
 
 
 
5b33e29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c38253
 
 
 
 
 
 
 
 
 
 
 
33e1890
 
 
 
aac4b76
 
 
 
 
 
 
 
ba9ac72
db73b94
 
2097a09
 
 
 
 
9aab0b8
04d2813
2097a09
 
04d2813
 
db73b94
04d2813
 
 
 
 
68237ea
04d2813
 
 
 
 
db73b94
5417824
04d2813
 
 
 
a9e502e
04d2813
e65c203
04d2813
e65c203
d7635b7
88e17ff
04d2813
68237ea
04d2813
 
 
9083910
04d2813
 
 
 
 
 
 
 
 
 
 
0a472e1
 
 
 
04d2813
0a472e1
 
 
 
04d2813
e3c494c
 
 
0a472e1
 
 
 
362821c
 
47d601f
 
04d2813
a9e502e
dd00657
04d2813
 
 
0a472e1
 
a9e502e
 
04d2813
 
e65c203
04d2813
 
 
e65c203
04d2813
0a472e1
 
 
 
 
2c34f8d
db73b94
60e32ff
db73b94
0a472e1
 
 
2b43668
 
1c33eb8
 
 
0a472e1
 
8626b54
 
 
 
04d2813
0a472e1
 
 
 
 
 
04d2813
9083910
04d2813
 
0a472e1
04d2813
0a472e1
 
 
 
 
 
 
 
04d2813
 
 
9196237
04d2813
 
 
c22df8d
0a472e1
04d2813
 
29273b5
0a472e1
 
 
04d2813
 
4ee79f2
0a472e1
04d2813
0a472e1
c2a0792
0a472e1
0e74b64
0a472e1
 
 
04d2813
4cd1dee
 
04d2813
0a472e1
 
 
 
04d2813
16f9e28
0a472e1
04d2813
0a472e1
 
 
05c1834
 
 
 
 
 
 
 
 
 
 
 
04d2813
 
 
 
c969f0a
 
 
 
 
 
04d2813
eea2731
 
0a472e1
 
 
e65c203
2675fb7
 
 
55b8542
 
5878bb1
 
 
04d2813
0a472e1
 
 
 
 
04d2813
0a472e1
 
 
2b43668
04d2813
 
 
 
2b43668
 
f2a2029
04d2813
 
 
12de7b7
04d2813
 
 
29273b5
04d2813
 
29273b5
 
 
04d2813
 
9083910
 
 
d7d8bc7
 
 
12de7b7
 
04d2813
0a472e1
04d2813
0a472e1
3f6017d
db73b94
 
 
 
ba9ac72
db73b94
 
0a472e1
04d2813
0a472e1
04d2813
 
 
0a472e1
 
04d2813
 
8552218
04d2813
8552218
 
34ae699
8552218
 
 
34ae699
8552218
c4e4f81
 
 
34ae699
c4e4f81
0a472e1
bc97f9c
04d2813
ba9ac72
 
 
e7e1a77
ba9ac72
 
88e17ff
 
 
 
 
 
ba9ac72
 
5417824
 
 
 
 
3c71c8d
5417824
ba9ac72
1377400
 
 
 
e689069
 
 
 
aac4b76
3f6017d
e07bd8a
 
b267d24
 
 
 
 
 
 
 
 
 
5ff547d
 
 
 
 
 
 
 
 
 
ba9ac72
 
 
04d2813
bc97f9c
afb31e1
 
 
b1cc54b
afb31e1
b1cc54b
 
 
afb31e1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
# Axolotl

<div align="center">
  <img src="image/axolotl.png" alt="axolotl" width="160">
  <div>
    <p>
      <b>One repo to finetune them all! </b>
    </p>
    <p>
      Go ahead and axolotl questions!!
    </p>
    <img src="https://github.com/OpenAccess-AI-Collective/axolotl/actions/workflows/pre-commit.yml/badge.svg?branch=main" alt="pre-commit">
    <img alt="PyTest Status" src="https://github.com/OpenAccess-AI-Collective/axolotl/actions/workflows/tests.yml/badge.svg?branch=main">
  </div>
</div>

## Axolotl supports

|          | fp16/fp32 | lora | qlora | gptq | gptq w/ lora | gptq w/flash attn | flash attn | xformers attn |
|----------|:----------|:-----|-------|------|:-------------|-------------------|------------|---------------|
| llama    | βœ…         | βœ…    | βœ…     | βœ…    | βœ…             | βœ…                 | βœ…          | βœ…             |
| Pythia   | βœ…         | βœ…    | βœ…     | ❌    | ❓            | ❌                 | ❌          | ❓             |
| cerebras | βœ…         | βœ…    | βœ…     | ❌    | ❓            | ❌                 | ❌          | βœ…             |
| mpt      | βœ…         | ❌    | ❓     | ❌    | ❓            | ❌                 | ❌          | ❓             |
| falcon   | βœ…         | βœ…    | βœ…     | ❌    | ❓            | ❌                 | ❌          | βœ…             |
| gpt-j    | βœ…         | βœ…    | βœ…     | ❌    | ❓            | ❌                 | ❓          | βœ…             |


## Quickstart ⚑

**Requirements**: Python 3.9 and Pytorch 2.0.

```bash
git clone https://github.com/OpenAccess-AI-Collective/axolotl

pip3 install -e .
pip3 install -U git+https://github.com/huggingface/peft.git

accelerate config

# finetune lora
accelerate launch scripts/finetune.py examples/openllama-3b/lora.yml

# inference
accelerate launch scripts/finetune.py examples/openllama-3b/lora.yml \
    --inference --lora_model_dir="./lora-out"
```

## Installation

### Environment

- Docker
  ```bash
  docker run --gpus '"all"' --rm -it winglian/axolotl:main-py3.9-cu118-2.0.0
  ```
  - `winglian/axolotl-runpod:main-py3.9-cu118-2.0.0`: for runpod
  - `winglian/axolotl-runpod:main-py3.9-cu118-2.0.0-gptq`: for gptq
  - `winglian/axolotl:dev`: dev branch (not usually up to date)

  Or run on the current files for development:

  ```sh
  docker compose up -d
  ```

- Conda/Pip venv
  1. Install python **3.9**

  2. Install pytorch stable https://pytorch.org/get-started/locally/

  3. Install python dependencies with ONE of the following:
      - Recommended, supports QLoRA, NO gptq/int4 support
        ```bash
        pip3 install -e .
        pip3 install -U git+https://github.com/huggingface/peft.git
        ```
      - gptq/int4 support, NO QLoRA
        ```bash
        pip3 install -e .[gptq]
        ```
      - same as above but not recommended
        ```bash
        pip3 install -e .[gptq_triton]
        ```

- LambdaLabs
  <details>

  <summary>Click to Expand</summary>

  1. Install python
  ```bash
  sudo apt update
  sudo apt install -y python3.9

  sudo update-alternatives --install /usr/bin/python python /usr/bin/python3.9 1
  sudo update-alternatives --config python # pick 3.9 if given option
  python -V # should be 3.9

  ```

  2. Install pip
  ```bash
  wget https://bootstrap.pypa.io/get-pip.py
  python get-pip.py
  ```

  3. Install torch
  ```bash
  pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118
  ```

  4. Axolotl
  ```bash
  git clone https://github.com/OpenAccess-AI-Collective/axolotl
  cd axolotl

  pip3 install -e . # change depend on needs
  pip3 install protobuf==3.20.3
  pip3 install -U requests
  pip3 install -U --ignore-installed psutil
  pip3 install -U scipy
  pip3 install git+https://github.com/huggingface/peft.git # not for gptq
  ```

  5. Set path
  ```bash
  export LD_LIBRARY_PATH=/usr/lib/x86_64-linux-gnu:$LD_LIBRARY_PATH
  ```
  </details>

### Dataset

Have dataset(s) in one of the following format (JSONL recommended):

- `alpaca`: instruction; input(optional)
  ```json
  {"instruction": "...", "input": "...", "output": "..."}
  ```
- `sharegpt:chat`: conversations
  ```json
  {"conversations": [{"from": "...", "value": "..."}]}
  ```
- `completion`: raw corpus
  ```json
  {"text": "..."}
  ```

<details>

<summary>See other formats</summary>

- `jeopardy`: question and answer
  ```json
  {"question": "...", "category": "...", "answer": "..."}
  ```
- `oasst`: instruction
  ```json
  {"INSTRUCTION": "...", "RESPONSE": "..."}
  ```
- `gpteacher`: instruction; input(optional)
  ```json
  {"instruction": "...", "input": "...", "response": "..."}
  ```
- `reflection`: instruction with reflect; input(optional)
  ```json
  {"instruction": "...", "input": "...", "output": "...", "reflection": "...", "corrected": "..."}
  ```
- `explainchoice`: question, choices, (solution OR explanation)
  ```json
  {"question": "...", "choices": ["..."], "solution": "...", "explanation": "..."}
  ```
- `concisechoice`: question, choices, (solution OR explanation)
  ```json
  {"question": "...", "choices": ["..."], "solution": "...", "explanation": "..."}
  ```
- `summarizetldr`: article and summary
  ```json
  {"article": "...", "summary": "..."}
  ```
- `alpaca_chat`: basic instruct for alpaca chat
  ```json
  {"instruction": "...", "input": "...", "response": "..."}
  ```
- `alpaca_chat.load_qa`: question and answer for alpaca chat
  ```json
  {"question": "...", "answer": "..."}
  ```
- `alpaca_chat.load_concise`: question and answer for alpaca chat, for concise answers
  ```json
  {"instruction": "...", "input": "...", "response": "..."}
  ```
- `alpaca_chat.load_camel_ai`: question and answer for alpaca chat, for load_camel_ai
  ```json
  {"message_1": "...", "message_2": "..."}
  ```
- `context_qa`: in context question answering from an article
  ```json
  {"article": "...", "question": "...", "answer": "..."}
  ```
- `context_qa.load_404`: in context question answering from an article, with default response for no answer from context
  ```json
  {"article": "...", "unanswerable_question": "..."}
  ```
- `creative_acr.load_answer`: instruction and revision
  ```json
  {"instruction": "...", "revision": "..."}
  ```
- `creative_acr.load_critique`: critique
  ```json
  {"scores": "...", "critiques": "...", "instruction": "...", "answer": "..."}
  ```
- `creative_acr.load_revise`: critique and revise
  ```json
  {"scores": "...", "critiques": "...", "instruction": "...", "answer": "...", "revision": "..."}
  ```
- `pygmalion`: pygmalion
  ```json
  {"conversations": [{"role": "...", "value": "..."}]}
  ```
- `sharegpt_simple.load_role`: conversations where `role` is used instead of `from`
  ```json
  {"conversations": [{"role": "...", "value": "..."}]}
  ```
- `sharegpt_jokes`: creates a chat where bot is asked to tell a joke, then explain why the joke is funny
  ```json
  {"conversations": [{"title": "...", "text": "...", "explanation": "..."}]}
  ```

</details>

#### How to add custom prompts

  1. Add your method to a file in [prompt_strategies](src/axolotl/prompt_strategies). Please see other files as example.
  2. Use your custom file name as the dataset type.

Optionally, download some datasets, see [data/README.md](data/README.md)



### Config

See sample configs in [configs](configs) folder or [examples](examples) for quick start. It is recommended to duplicate and modify to your needs. The most important options are:

- model
  ```yaml
  base_model: ./llama-7b-hf # local or huggingface repo
  ```
  Note: The code will load the right architecture.

- dataset
  ```yaml
  datasets:
    - path: vicgalle/alpaca-gpt4 # local or huggingface repo
      type: alpaca # format from earlier
  sequence_len: 2048 # max token length / prompt
  ```

- loading
  ```yaml
  load_in_4bit: true
  load_in_8bit: true
  bf16: true # require >=ampere
  fp16: true
  tf32: true # require >=ampere
  bfloat16: true # require >=ampere, use instead of bf16 when you don't want AMP (automatic mixed precision)
  float16: true # use instead of fp16 when you don't want AMP
  ```
  Note: Repo does not do 4-bit quantization.

- lora
  ```yaml
  adapter: lora # qlora or leave blank for full finetune
  lora_r: 8
  lora_alpha: 16
  lora_dropout: 0.05
  lora_target_modules:
    - q_proj
    - v_proj
  ```

<details>

<summary>All yaml options</summary>

```yaml
# this is the huggingface model that contains *.pt, *.safetensors, or *.bin files
# this can also be a relative path to a model on disk
base_model: ./llama-7b-hf
# you can specify an ignore pattern if the model repo contains more than 1 model type (*.pt, etc)
base_model_ignore_patterns:
# if the base_model repo on hf hub doesn't include configuration .json files,
# you can set that here, or leave this empty to default to base_model
base_model_config: ./llama-7b-hf
# Optional tokenizer configuration override in case you want to use a different tokenizer
# than the one defined in the base model
tokenizer_config:
# If you want to specify the type of model to load, AutoModelForCausalLM is a good choice too
model_type: AutoModelForCausalLM
# Corresponding tokenizer for the model AutoTokenizer is a good choice
tokenizer_type: AutoTokenizer
# Trust remote code for untrusted source
trust_remote_code:
# use_fast option for tokenizer loading from_pretrained, default to True
tokenizer_use_fast:

# whether you are training a 4-bit GPTQ quantized model
gptq: true
gptq_groupsize: 128 # group size
gptq_model_v1: false # v1 or v2

# this will attempt to quantize the model down to 8 bits and use adam 8 bit optimizer
load_in_8bit: true
# use bitsandbytes 4 bit
load_in_4bit:

# Use CUDA bf16
bf16: true # bool or 'full' for `bf16_full_eval`. require >=ampere
# Use CUDA fp16
fp16: true
# Use CUDA tf32
tf32: true # require >=ampere

# a list of one or more datasets to finetune the model with
datasets:
  # this can be either a hf dataset, or relative path
  - path: vicgalle/alpaca-gpt4
  # The type of prompt to use for training. [alpaca, sharegpt, gpteacher, oasst, reflection]
    type: alpaca # format OR format:prompt_style (chat/instruct)
    data_files: # path to source data files
    shards: # number of shards to split data into

# axolotl attempts to save the dataset as an arrow after packing the data together so
# subsequent training attempts load faster, relative path
dataset_prepared_path: data/last_run_prepared
# push prepared dataset to hub
push_dataset_to_hub: # repo path
# whether to use hf `use_auth_token` for loading datasets. Useful for fetching private datasets
# required to be true when used in combination with `push_dataset_to_hub`
hf_use_auth_token: # boolean
# How much of the dataset to set aside as evaluation. 1 = 100%, 0.50 = 50%, etc
val_set_size: 0.04
# Num shards for whole dataset
dataset_shard_num:
# Index of shard to use for whole dataset
dataset_shard_idx:

# the maximum length of an input to train with, this should typically be less than 2048
# as most models have a token/context limit of 2048
sequence_len: 2048
# max sequence length to concatenate training samples together up to
# inspired by StackLLaMA. see https://huggingface.co/blog/stackllama#supervised-fine-tuning
max_packed_sequence_len: 1024

# if you want to use 'lora' or 'qlora' or leave blank to train all parameters in original model
adapter: lora
# if you already have a lora model trained that you want to load, put that here
# lora hyperparameters
lora_model_dir:
lora_r: 8
lora_alpha: 16
lora_dropout: 0.05
lora_target_modules:
  - q_proj
  - v_proj
#  - k_proj
#  - o_proj
#  - gate_proj
#  - down_proj
#  - up_proj
lora_target_linear: # if true, will target all linear layers
lora_modules_to_save:
#  - embed_tokens
#  - lm_head
lora_out_dir:
lora_fan_in_fan_out: false

# wandb configuration if you're using it
wandb_mode:
wandb_project:
wandb_watch:
wandb_run_id:
wandb_log_model: # 'checkpoint'

# where to save the finished model to
output_dir: ./completed-model

# training hyperparameters
gradient_accumulation_steps: 1
micro_batch_size: 2
eval_batch_size: 2
num_epochs: 3
warmup_steps: 100
learning_rate: 0.00003
logging_steps:
save_steps:
eval_steps:

# whether to mask out or include the human's prompt from the training labels
train_on_inputs: false
# don't use this, leads to wonky training (according to someone on the internet)
group_by_length: false

# Whether to use gradient checkpointing https://huggingface.co/docs/transformers/v4.18.0/en/performance#gradient-checkpointing
gradient_checkpointing: false

# stop training after this many evaluation losses have increased in a row
# https://huggingface.co/transformers/v4.2.2/_modules/transformers/trainer_callback.html#EarlyStoppingCallback
early_stopping_patience: 3

# specify a scheduler and kwargs to use with the optimizer
lr_scheduler: # 'one_cycle' | 'log_sweep' | empty for cosine
lr_scheduler_kwargs:

# for one_cycle optim
lr_div_factor: # learning rate div factor

# for log_sweep optim
log_sweep_min_lr:
log_sweep_max_lr:

# specify optimizer
optimizer:
# specify weight decay
weight_decay:
# adamw hyperparams
adam_beta1:
adam_beta2:
adam_epsilon:
# Gradient clipping max norm
max_grad_norm:

# whether to bettertransformers
flash_optimum:
# whether to use xformers attention patch https://github.com/facebookresearch/xformers:
xformers_attention:
# whether to use flash attention patch https://github.com/HazyResearch/flash-attention:
flash_attention:  # require a100 for llama
# whether to use scaled-dot-product attention
# https://pytorch.org/docs/stable/generated/torch.nn.functional.scaled_dot_product_attention.html
sdp_attention:
# Landmark attention (only llama)
landmark_attention:
# xpos RoPE see https://github.com/kaiokendev/cutoff-len-is-context-len/blob/main/util/xpos_rope_llama_monkey_patch.py
# llama only
xpos_rope:

# resume from a specific checkpoint dir
resume_from_checkpoint:
# if resume_from_checkpoint isn't set and you simply want it to start where it left off
# be careful with this being turned on between different models
auto_resume_from_checkpoints: false

# don't mess with this, it's here for accelerate and torchrun
local_rank:

# add or change special tokens
special_tokens:
  # bos_token: "<s>"
  # eos_token: "</s>"
  # unk_token: "<unk>"
# add extra tokens
tokens:

# FSDP
fsdp:
fsdp_config:

# Deepspeed
deepspeed:

# Path to torch distx for optim 'adamw_anyprecision'
torchdistx_path:

# Set padding for data collator to 'longest'
collator_pad_to_longest:

# Debug mode
debug:

# Seed
seed:

# Allow overwrite yml config using from cli
strict:
```

</details>

### Accelerate

Configure accelerate

```bash
accelerate config

# Edit manually
# nano ~/.cache/huggingface/accelerate/default_config.yaml
```

### Train

Run
```bash
accelerate launch scripts/finetune.py configs/your_config.yml
```

### Inference

Pass the appropriate flag to the train command:

- Pretrained LORA:
  ```bash
  --inference --lora_model_dir="./lora-output-dir"
  ```
- Full weights finetune:
  ```bash
  --inference --base_model="./completed-model"
  ```
- Full weights finetune w/ a prompt from a text file:
  ```bash
  cat /tmp/prompt.txt | python scripts/finetune.py configs/your_config.yml \
    --base_model="./completed-model" --inference --prompter=None --load_in_8bit=True
  ```

### Merge LORA to base

Add below flag to train command above

```bash
--merge_lora --lora_model_dir="./completed-model" --load_in_8bit=False --load_in_4bit=False
```

If you run out of CUDA memory, you can try to merge in system RAM with

```bash
CUDA_VISIBLE_DEVICES="" python3 scripts/finetune.py ...
```

## Common Errors 🧰

> Cuda out of memory

Please reduce any below
  - `micro_batch_size`
  - `eval_batch_size`
  - `gradient_accumulation_steps`
  - `sequence_len`

> RuntimeError: expected scalar type Float but found Half

Try set `fp16: true`

> NotImplementedError: No operator found for `memory_efficient_attention_forward` ...

Try to turn off xformers.

## Need help? πŸ™‹β™‚οΈ

Join our [Discord server](https://discord.gg/HhrNrHJPRb) where we can help you

## Badge ❀🏷️

Building something cool with Axolotl? Consider adding a badge to your model card.

```markdown
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
```

[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)

## Community Showcase

Open Access AI Collective
- [Minotaur 13b](https://huggingface.co/openaccess-ai-collective/minotaur-13b)
- [Manticore 13b](https://huggingface.co/openaccess-ai-collective/manticore-13b)
- [Hippogriff 30b](https://huggingface.co/openaccess-ai-collective/hippogriff-30b-chat)

PocketDoc Labs
- [Dan's PersonalityEngine 13b LoRA](https://huggingface.co/PocketDoc/Dans-PersonalityEngine-13b-LoRA)

## Contributing 🀝

Bugs? Please check for open issue else create a new [Issue](https://github.com/OpenAccess-AI-Collective/axolotl/issues/new).

PRs are **greatly welcome**!

Please run below to setup env
```bash
pip3 install -r requirements-dev.txt -r requirements-tests.txt
pre-commit install

# test
pytest tests/
```