File size: 5,606 Bytes
ee0b5f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c7ed26
ee0b5f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ab69ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee0b5f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
{
  "cells": [
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "AKjdG7tbTb-n"
      },
      "source": [
        "# Example notebook for running Axolotl on google colab"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "RcbNpOgWRcii"
      },
      "outputs": [],
      "source": [
        "import torch\n",
        "# Check so there is a gpu available, a T4(free tier) is enough to run this notebook\n",
        "assert (torch.cuda.is_available()==True)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "h3nLav8oTRA5"
      },
      "source": [
        "## Install Axolotl and dependencies"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "3c3yGAwnOIdi",
        "outputId": "e3777b5a-40ef-424f-e181-62dfecd1dd01"
      },
      "outputs": [],
      "source": [
        "!pip install torch==\"2.1.2\"\n",
        "!pip install -e git+https://github.com/OpenAccess-AI-Collective/axolotl#egg=axolotl\n",
        "!pip install flash-attn==\"2.5.0\"\n",
        "!pip install deepspeed==\"0.13.1\""
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "BW2MFr7HTjub"
      },
      "source": [
        "## Create an yaml config file"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "9pkF2dSoQEUN"
      },
      "outputs": [],
      "source": [
        "import yaml\n",
        "\n",
        "# Your YAML string\n",
        "yaml_string = \"\"\"\n",
        "base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T\n",
        "model_type: LlamaForCausalLM\n",
        "tokenizer_type: LlamaTokenizer\n",
        "is_llama_derived_model: true\n",
        "\n",
        "load_in_8bit: false\n",
        "load_in_4bit: true\n",
        "strict: false\n",
        "\n",
        "datasets:\n",
        "  - path: mhenrichsen/alpaca_2k_test\n",
        "    type: alpaca\n",
        "dataset_prepared_path:\n",
        "val_set_size: 0.05\n",
        "output_dir: ./qlora-out\n",
        "\n",
        "adapter: qlora\n",
        "lora_model_dir:\n",
        "\n",
        "sequence_len: 1096\n",
        "sample_packing: true\n",
        "pad_to_sequence_len: true\n",
        "\n",
        "lora_r: 32\n",
        "lora_alpha: 16\n",
        "lora_dropout: 0.05\n",
        "lora_target_modules:\n",
        "lora_target_linear: true\n",
        "lora_fan_in_fan_out:\n",
        "\n",
        "wandb_project:\n",
        "wandb_entity:\n",
        "wandb_watch:\n",
        "wandb_name:\n",
        "wandb_log_model:\n",
        "\n",
        "mlflow_experiment_name: colab-example\n",
        "\n",
        "gradient_accumulation_steps: 1\n",
        "micro_batch_size: 1\n",
        "num_epochs: 4\n",
        "max_steps: 20\n",
        "optimizer: paged_adamw_32bit\n",
        "lr_scheduler: cosine\n",
        "learning_rate: 0.0002\n",
        "\n",
        "train_on_inputs: false\n",
        "group_by_length: false\n",
        "bf16: false\n",
        "fp16: true\n",
        "tf32: false\n",
        "\n",
        "gradient_checkpointing: true\n",
        "early_stopping_patience:\n",
        "resume_from_checkpoint:\n",
        "local_rank:\n",
        "logging_steps: 1\n",
        "xformers_attention:\n",
        "flash_attention: false\n",
        "\n",
        "warmup_steps: 10\n",
        "evals_per_epoch:\n",
        "saves_per_epoch:\n",
        "debug:\n",
        "deepspeed:\n",
        "weight_decay: 0.0\n",
        "fsdp:\n",
        "fsdp_config:\n",
        "special_tokens:\n",
        "\n",
        "\"\"\"\n",
        "\n",
        "# Convert the YAML string to a Python dictionary\n",
        "yaml_dict = yaml.safe_load(yaml_string)\n",
        "\n",
        "# Specify your file path\n",
        "file_path = 'test_axolotl.yaml'\n",
        "\n",
        "# Write the YAML file\n",
        "with open(file_path, 'w') as file:\n",
        "    yaml.dump(yaml_dict, file)\n"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "bidoj8YLTusD"
      },
      "source": [
        "## Launch the training"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "ydTI2Jk2RStU",
        "outputId": "d6d0df17-4b53-439c-c802-22c0456d301b"
      },
      "outputs": [],
      "source": [
        "# Buy using the ! the comand will be executed as a bash command\n",
        "!accelerate launch -m axolotl.cli.train /content/test_axolotl.yaml"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {},
      "source": [
        "## Play with inference"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {},
      "outputs": [],
      "source": [
        "# Buy using the ! the comand will be executed as a bash command\n",
        "!accelerate launch -m axolotl.cli.inference /content/test_axolotl.yaml \\\n",
        "    --qlora_model_dir=\"./qlora-out\" --gradio"
      ]
    }
  ],
  "metadata": {
    "accelerator": "GPU",
    "colab": {
      "gpuType": "T4",
      "provenance": []
    },
    "kernelspec": {
      "display_name": "Python 3",
      "name": "python3"
    },
    "language_info": {
      "name": "python"
    }
  },
  "nbformat": 4,
  "nbformat_minor": 0
}