File size: 5,541 Bytes
7523d1f
 
 
 
 
 
 
 
 
0001862
 
7523d1f
 
 
 
 
 
 
 
 
 
 
 
0001862
7523d1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
"""
E2E tests for lora llama
"""

import logging
import os
import unittest
from pathlib import Path

import pytest

from axolotl.cli import load_rl_datasets
from axolotl.common.cli import TrainerCliArgs
from axolotl.train import train
from axolotl.utils.config import normalize_config
from axolotl.utils.dict import DictDefault

from .utils import with_temp_dir

LOG = logging.getLogger("axolotl.tests.e2e")
os.environ["WANDB_DISABLED"] = "true"


@pytest.mark.skip(reason="doesn't seem to work on modal")
class TestDPOLlamaLora(unittest.TestCase):
    """
    Test case for DPO Llama models using LoRA
    """

    @with_temp_dir
    def test_dpo_lora(self, temp_dir):
        # pylint: disable=duplicate-code
        cfg = DictDefault(
            {
                "base_model": "JackFram/llama-68m",
                "tokenizer_type": "LlamaTokenizer",
                "sequence_len": 1024,
                "load_in_8bit": True,
                "adapter": "lora",
                "lora_r": 64,
                "lora_alpha": 32,
                "lora_dropout": 0.1,
                "lora_target_linear": True,
                "special_tokens": {},
                "rl": "dpo",
                "datasets": [
                    {
                        "path": "Intel/orca_dpo_pairs",
                        "type": "chatml.intel",
                        "split": "train",
                    },
                ],
                "num_epochs": 1,
                "micro_batch_size": 4,
                "gradient_accumulation_steps": 1,
                "output_dir": temp_dir,
                "learning_rate": 0.00001,
                "optimizer": "paged_adamw_8bit",
                "lr_scheduler": "cosine",
                "max_steps": 20,
                "save_steps": 10,
                "warmup_steps": 5,
                "gradient_checkpointing": True,
                "gradient_checkpointing_kwargs": {"use_reentrant": True},
            }
        )
        normalize_config(cfg)
        cli_args = TrainerCliArgs()
        dataset_meta = load_rl_datasets(cfg=cfg, cli_args=cli_args)

        train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta)
        assert (Path(temp_dir) / "checkpoint-20/adapter_model.safetensors").exists()

    @with_temp_dir
    def test_kto_pair_lora(self, temp_dir):
        # pylint: disable=duplicate-code
        cfg = DictDefault(
            {
                "base_model": "JackFram/llama-68m",
                "tokenizer_type": "LlamaTokenizer",
                "sequence_len": 1024,
                "load_in_8bit": True,
                "adapter": "lora",
                "lora_r": 64,
                "lora_alpha": 32,
                "lora_dropout": 0.1,
                "lora_target_linear": True,
                "special_tokens": {},
                "rl": "kto_pair",
                "datasets": [
                    {
                        "path": "Intel/orca_dpo_pairs",
                        "type": "chatml.intel",
                        "split": "train",
                    },
                ],
                "num_epochs": 1,
                "micro_batch_size": 4,
                "gradient_accumulation_steps": 1,
                "output_dir": temp_dir,
                "learning_rate": 0.00001,
                "optimizer": "paged_adamw_8bit",
                "lr_scheduler": "cosine",
                "max_steps": 20,
                "save_steps": 10,
                "warmup_steps": 5,
                "gradient_checkpointing": True,
                "gradient_checkpointing_kwargs": {"use_reentrant": True},
            }
        )
        normalize_config(cfg)
        cli_args = TrainerCliArgs()
        dataset_meta = load_rl_datasets(cfg=cfg, cli_args=cli_args)

        train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta)
        assert (Path(temp_dir) / "checkpoint-20/adapter_model.safetensors").exists()

    @with_temp_dir
    def test_ipo_lora(self, temp_dir):
        # pylint: disable=duplicate-code
        cfg = DictDefault(
            {
                "base_model": "JackFram/llama-68m",
                "tokenizer_type": "LlamaTokenizer",
                "sequence_len": 1024,
                "load_in_8bit": True,
                "adapter": "lora",
                "lora_r": 64,
                "lora_alpha": 32,
                "lora_dropout": 0.1,
                "lora_target_linear": True,
                "special_tokens": {},
                "rl": "ipo",
                "datasets": [
                    {
                        "path": "Intel/orca_dpo_pairs",
                        "type": "chatml.intel",
                        "split": "train",
                    },
                ],
                "num_epochs": 1,
                "micro_batch_size": 4,
                "gradient_accumulation_steps": 1,
                "output_dir": temp_dir,
                "learning_rate": 0.00001,
                "optimizer": "paged_adamw_8bit",
                "lr_scheduler": "cosine",
                "max_steps": 20,
                "save_steps": 10,
                "warmup_steps": 5,
                "gradient_checkpointing": True,
                "gradient_checkpointing_kwargs": {"use_reentrant": True},
            }
        )
        normalize_config(cfg)
        cli_args = TrainerCliArgs()
        dataset_meta = load_rl_datasets(cfg=cfg, cli_args=cli_args)

        train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta)
        assert (Path(temp_dir) / "checkpoint-20/adapter_model.safetensors").exists()