File size: 33,134 Bytes
5cb7ea4
 
2495909
 
3a2edc8
 
 
 
 
 
 
 
 
 
 
 
2495909
 
 
 
 
 
 
 
 
77c84e0
 
 
 
2495909
 
04a42b6
2495909
 
c25ba79
2495909
 
 
 
 
 
 
 
 
 
 
db73b94
 
 
 
2495909
db73b94
 
77c84e0
db73b94
afb31e1
 
db73b94
 
 
2495909
 
 
 
db73b94
5cb7ea4
3d1f203
a5a625f
 
 
 
 
 
 
 
 
 
e9da4b9
 
ba9ac72
db73b94
2495909
 
58d6659
db73b94
 
 
d21318d
db73b94
9845c5e
5e5296a
cfff94b
db73b94
85326bf
861ceca
db73b94
ba9ac72
861ceca
 
ba9ac72
db73b94
ba9ac72
e9da4b9
04d2813
 
77c84e0
04d2813
41a4d15
04d2813
34c0a86
04d2813
84169d1
 
 
 
 
 
77c84e0
04a42b6
04d2813
bdc4bd7
cf61f14
77c84e0
2b222de
9845c5e
5e5296a
2b222de
85b0be2
 
 
 
 
04d2813
77c84e0
ff68a95
 
 
 
 
 
2e13cef
 
ff68a95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41a4d15
ff68a95
 
 
 
 
 
 
9845c5e
5e5296a
ff68a95
919f4ca
ff68a95
 
 
 
 
 
 
 
77c84e0
 
f51c9c5
04d2813
 
2495909
9aab0b8
04d2813
db73b94
 
 
 
e7d3e2d
db73b94
 
 
 
 
 
 
 
 
 
e1a91b0
db73b94
857a80b
c22df8d
 
 
857a80b
c22df8d
 
 
857a80b
c22df8d
 
 
857a80b
c22df8d
 
 
7bc28eb
 
 
 
 
 
 
f92245d
7bc28eb
 
 
 
5b33e29
 
 
 
1c38253
 
 
 
5b33e29
 
 
 
 
 
 
 
78a1e1f
 
 
 
5b33e29
 
 
 
409ca0f
 
 
 
5b33e29
 
 
 
1c38253
 
 
 
 
 
 
 
 
 
 
 
33e1890
 
 
 
f474650
 
 
 
e7d3e2d
aac4b76
 
 
e7d3e2d
729c299
 
 
aac4b76
 
 
 
ba9ac72
db73b94
 
2097a09
 
e1b214c
 
 
 
 
 
 
 
04a42b6
 
 
 
 
e1b214c
 
 
04a42b6
 
 
04d2813
04a42b6
590d603
2097a09
 
04d2813
 
cc7e800
04d2813
 
 
 
 
68237ea
04d2813
 
 
9e64f42
41da98b
 
04d2813
9e64f42
 
46032a1
8bba642
 
 
 
 
f7a2263
9e64f42
5ac3392
 
 
 
 
 
 
 
 
9e64f42
 
04a42b6
 
 
409ca0f
 
 
 
 
 
04d2813
 
 
 
a9e502e
04d2813
e65c203
04d2813
e65c203
d7635b7
88e17ff
04d2813
68237ea
04d2813
 
 
9083910
04d2813
 
 
 
 
 
 
 
 
 
 
0a472e1
 
77c84e0
 
04d2813
77c84e0
0a472e1
77c84e0
 
04d2813
77c84e0
896c1ae
e3c494c
 
 
0a472e1
 
 
 
362821c
 
47d601f
 
47961fd
 
77c84e0
 
1066751
04d2813
77c84e0
19a600a
 
77c84e0
eb41f76
19a600a
77c84e0
dd00657
04d2813
 
 
77c84e0
0a472e1
77c84e0
a9e502e
04d2813
 
e65c203
04d2813
 
 
e65c203
04d2813
48c5647
 
 
 
77c84e0
0a472e1
77c84e0
0a472e1
 
9e64f42
00dce35
 
 
 
e7d3e2d
db73b94
77c84e0
04a42b6
 
77c84e0
04a42b6
5855dde
04a42b6
 
5855dde
 
04a42b6
77c84e0
04a42b6
 
 
 
 
 
 
5855dde
f7a2263
 
77c84e0
0a472e1
 
77c84e0
2b43668
9ec2077
 
 
c146880
165907f
73a0b6e
 
 
77c84e0
 
1c33eb8
be294fd
0a472e1
8626b54
 
 
 
04d2813
77c84e0
0a472e1
 
77c84e0
 
8e197f6
77c84e0
 
2bb0b78
0a472e1
77c84e0
2bb0b78
77c84e0
67b9888
77c84e0
2bb0b78
 
 
04d2813
77c84e0
04d2813
77c84e0
 
04d2813
77c84e0
 
 
 
0a472e1
 
 
 
 
 
 
 
04d2813
 
 
77c84e0
 
 
 
 
 
04d2813
 
 
77c84e0
 
 
 
c22df8d
0a472e1
04d2813
bde3c5a
77c84e0
 
 
 
bde3c5a
04d2813
7019509
77c84e0
 
0a472e1
77c84e0
7019509
04d2813
77c84e0
0a472e1
04d2813
77c84e0
a4e1bb6
 
 
77c84e0
 
 
c2a0792
77c84e0
0a472e1
2642cae
0a472e1
 
 
2b990eb
04d2813
77c84e0
 
 
 
 
 
 
41ecb45
04d2813
77c84e0
 
5b67ea9
77c84e0
5491278
 
77c84e0
0a472e1
77c84e0
 
 
0a472e1
04d2813
16f9e28
0a472e1
04d2813
77c84e0
0a472e1
 
05c1834
77c84e0
05c1834
 
 
77c84e0
 
05c1834
77c84e0
05c1834
 
 
77c84e0
6d57f2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
04d2813
77c84e0
04d2813
c969f0a
 
 
 
 
 
04d2813
3bd9528
 
 
 
 
77c84e0
eea2731
77c84e0
0a472e1
77c84e0
72fe3f8
895f0a0
 
77c84e0
2675fb7
 
55b8542
 
5878bb1
77c84e0
5878bb1
b521206
 
 
 
04d2813
77c84e0
0a472e1
77c84e0
 
0a472e1
04d2813
77c84e0
0a472e1
 
77c84e0
 
04d2813
 
 
 
77c84e0
 
2b43668
f2a2029
04d2813
 
 
12de7b7
77c84e0
04d2813
 
396a7a7
 
 
 
 
29273b5
04d2813
 
fae6ed8
 
 
04d2813
 
9083910
 
 
d7d8bc7
 
 
12de7b7
 
04d2813
0a472e1
77c84e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
04d2813
0a472e1
04d2813
 
861ceca
0a472e1
 
94d03c8
 
2bb0b78
94d03c8
861ceca
94d03c8
 
 
cf5ae6b
 
 
 
 
 
 
 
 
 
 
 
7019509
 
 
 
 
 
 
 
 
 
 
 
c25ba79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
04d2813
 
8552218
04d2813
8552218
 
861ceca
8552218
 
 
861ceca
8552218
c4e4f81
 
861ceca
 
c4e4f81
0a472e1
11c48c5
 
 
 
bc97f9c
04d2813
ba9ac72
 
 
861ceca
ba9ac72
 
88e17ff
 
 
861ceca
88e17ff
 
ba9ac72
 
2495909
5417824
 
 
 
3c71c8d
5417824
ba9ac72
04a42b6
 
 
2495909
 
 
1377400
 
 
 
e689069
 
 
 
b64f411
cf5ae6b
 
 
5e2d8a4
 
 
 
aac4b76
3f6017d
e07bd8a
 
b267d24
 
 
 
 
 
 
 
 
 
5ff547d
 
2495909
 
5ff547d
 
 
 
 
 
 
 
ba9ac72
 
31db0ec
 
 
04d2813
bc97f9c
afb31e1
 
 
b1cc54b
afb31e1
b1cc54b
 
 
afb31e1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
# Axolotl

Axolotl is a tool designed to streamline the fine-tuning of various AI models, offering support for multiple configurations and architectures.

Features:
- Train various Huggingface models such as llama, pythia, falcon, mpt
- Supports fullfinetune, lora, qlora, relora, and gptq
- Customize configurations using a simple yaml file or CLI overwrite
- Load different dataset formats, use custom formats, or bring your own tokenized datasets
- Integrated with xformer, flash attention, rope scaling, and multipacking
- Works with single GPU or multiple GPUs via FSDP or Deepspeed
- Easily run with Docker locally or on the cloud
- Log results and optionally checkpoints to wandb
- And more!


<table>
<tr>
<td>

## Table of Contents
- [Introduction](#axolotl)
- [Supported Features](#axolotl-supports)
- [Quickstart](#quickstart-)
- [Installation](#installation)
  - [Docker](#docker)
  - [Conda/Pip venv](#condapip-venv)
  - [LambdaLabs](#lambdalabs)
  - [Windows](#windows)
- [Dataset](#dataset)
  - [How to Add Custom Prompts](#how-to-add-custom-prompts)
  - [How to Use Custom Pretokenized Dataset](#how-to-use-your-custom-pretokenized-dataset)
- [Config](#config)
  - [Train](#train)
  - [Training w/ Deepspeed](#training-with-deepspeed)
  - [Inference](#inference)
  - [Merge LORA to Base](#merge-lora-to-base)
- [Common Errors](#common-errors-)
- [Need Help?](#need-help-)
- [Badge](#badge-)
- [Community Showcase](#community-showcase)
- [Contributing](#contributing-)

</td>
<td>

<div align="center">
  <img src="image/axolotl.png" alt="axolotl" width="160">
  <div>
    <p>
      <b>Axolotl provides a unified repository for fine-tuning <br />a variety of AI models with ease</b>
    </p>
    <p>
      Go ahead and Axolotl questions!!
    </p>
    <img src="https://github.com/OpenAccess-AI-Collective/axolotl/actions/workflows/pre-commit.yml/badge.svg?branch=main" alt="pre-commit">
    <img alt="PyTest Status" src="https://github.com/OpenAccess-AI-Collective/axolotl/actions/workflows/tests.yml/badge.svg?branch=main">
  </div>
</div>

</td>
</tr>
</table>

## Axolotl supports

|          | fp16/fp32 | lora | qlora | gptq | gptq w/flash attn | flash attn | xformers attn |
|----------|:----------|:-----|-------|------|-------------------|------------|--------------|
| llama    | βœ…         | βœ…    | βœ…     | βœ…             | βœ…                 | βœ…          | βœ…            |
| Pythia   | βœ…         | βœ…    | βœ…     | ❌             | ❌                 | ❌          | ❓            |
| cerebras | βœ…         | βœ…    | βœ…     | ❌             | ❌                 | ❌          | ❓            |
| btlm     | βœ…         | βœ…    | βœ…     | ❌             | ❌                 | ❌          | ❓            |
| mpt      | βœ…         | ❌    | ❓     | ❌             | ❌                 | ❌          | ❓            |
| falcon   | βœ…         | βœ…    | βœ…     | ❌             | ❌                 | ❌          | ❓            |
| gpt-j    | βœ…         | βœ…    | βœ…     | ❌             | ❌                 | ❓          | ❓            |
| XGen     | βœ…         | ❓    | βœ…     | ❓             | ❓                 | ❓          | βœ…            |
| phi      | βœ…         | βœ…    | βœ…     | ❓             | ❓                 | ❓          | ❓            |


## Quickstart ⚑

Get started with Axolotl in just a few steps! This quickstart guide will walk you through setting up and running a basic fine-tuning task.

**Requirements**: Python >=3.9 and Pytorch >=2.0.

```bash
git clone https://github.com/OpenAccess-AI-Collective/axolotl
cd axolotl

pip3 install packaging
pip3 install -e '.[flash-attn,deepspeed]'
pip3 install -U git+https://github.com/huggingface/peft.git

# finetune lora
accelerate launch -m axolotl.cli.train examples/openllama-3b/lora.yml

# inference
accelerate launch -m axolotl.cli.inference examples/openllama-3b/lora.yml \
    --lora_model_dir="./lora-out"
```

## Installation

### Environment

#### Docker
  ```bash
  docker run --gpus '"all"' --rm -it winglian/axolotl:main-py3.10-cu118-2.0.1
  ```
  - `winglian/axolotl-runpod:main-latest`: for runpod or use this [direct link](https://runpod.io/gsc?template=v2ickqhz9s&ref=6i7fkpdz)

  Or run on the current files for development:

  ```sh
  docker compose up -d
  ```

#### Conda/Pip venv
  1. Install python >=**3.9**

  2. Install pytorch stable https://pytorch.org/get-started/locally/

  3. Install Axolotl along with python dependencies
        ```bash
        pip3 install packaging
        pip3 install -e '.[flash-attn,deepspeed]'
        ```
  4. (Optional) Login to Huggingface to use gated models/datasets.
        ```bash
        huggingface-cli login
        ```
        Get the token at huggingface.co/settings/tokens

#### LambdaLabs
  <details>

  <summary>Click to Expand</summary>

  1. Install python
  ```bash
  sudo apt update
  sudo apt install -y python3.9

  sudo update-alternatives --install /usr/bin/python python /usr/bin/python3.9 1
  sudo update-alternatives --config python # pick 3.9 if given option
  python -V # should be 3.9

  ```

  2. Install pip
  ```bash
  wget https://bootstrap.pypa.io/get-pip.py
  python get-pip.py
  ```

  3. Install torch
  ```bash
  pip3 install -U torch --index-url https://download.pytorch.org/whl/cu118
  ```

  4. Axolotl
  ```bash
  git clone https://github.com/OpenAccess-AI-Collective/axolotl
  cd axolotl

  pip3 install packaging
  pip3 install -e '.[flash-attn,deepspeed]'
  pip3 install protobuf==3.20.3
  pip3 install -U --ignore-installed requests Pillow psutil scipy
  ```

  5. Set path
  ```bash
  export LD_LIBRARY_PATH=/usr/lib/x86_64-linux-gnu:$LD_LIBRARY_PATH
  ```
  </details>

#### Windows
Please use WSL or Docker!

### Dataset

Axolotl supports a variety of dataset formats. Below are some of the formats you can use.
Have dataset(s) in one of the following format (JSONL recommended):

- `alpaca`: instruction; input(optional)
  ```json
  {"instruction": "...", "input": "...", "output": "..."}
  ```
- `sharegpt`: conversations where `from` is `human`/`gpt`
  ```json
  {"conversations": [{"from": "...", "value": "..."}]}
  ```
- `completion`: raw corpus
  ```json
  {"text": "..."}
  ```

<details>

<summary>See other formats</summary>

- `jeopardy`: question and answer
  ```json
  {"question": "...", "category": "...", "answer": "..."}
  ```
- `oasst`: instruction
  ```json
  {"INSTRUCTION": "...", "RESPONSE": "..."}
  ```
- `gpteacher`: instruction; input(optional)
  ```json
  {"instruction": "...", "input": "...", "response": "..."}
  ```
- `reflection`: instruction with reflect; input(optional)
  ```json
  {"instruction": "...", "input": "...", "output": "...", "reflection": "...", "corrected": "..."}
  ```
- `explainchoice`: question, choices, (solution OR explanation)
  ```json
  {"question": "...", "choices": ["..."], "solution": "...", "explanation": "..."}
  ```
- `concisechoice`: question, choices, (solution OR explanation)
  ```json
  {"question": "...", "choices": ["..."], "solution": "...", "explanation": "..."}
  ```
- `summarizetldr`: article and summary
  ```json
  {"article": "...", "summary": "..."}
  ```
- `alpaca_chat`: basic instruct for alpaca chat
  ```json
  {"instruction": "...", "input": "...", "response": "..."}
  ```
- `alpaca_chat.load_qa`: question and answer for alpaca chat
  ```json
  {"question": "...", "answer": "..."}
  ```
- `alpaca_chat.load_concise`: question and answer for alpaca chat, for concise answers
  ```json
  {"instruction": "...", "input": "...", "response": "..."}
  ```
- `alpaca_chat.load_camel_ai`: question and answer for alpaca chat, for load_camel_ai
  ```json
  {"message_1": "...", "message_2": "..."}
  ```
- `alpaca_w_system.load_open_orca`: support for open orca datasets with included system prompts, instruct
  ```json
  {"system_prompt": "...", "question": "...", "response": "..."}
  ```
- `context_qa`: in context question answering from an article
  ```json
  {"article": "...", "question": "...", "answer": "..."}
  ```
- `context_qa.load_v2`: in context question answering (alternate)
  ```json
  {"context": "...", "question": "...", "answer": "..."}
  ```
- `context_qa.load_404`: in context question answering from an article, with default response for no answer from context
  ```json
  {"article": "...", "unanswerable_question": "..."}
  ```
- `creative_acr.load_answer`: instruction and revision
  ```json
  {"instruction": "...", "revision": "..."}
  ```
- `creative_acr.load_critique`: critique
  ```json
  {"scores": "...", "critiques": "...", "instruction": "...", "answer": "..."}
  ```
- `creative_acr.load_revise`: critique and revise
  ```json
  {"scores": "...", "critiques": "...", "instruction": "...", "answer": "...", "revision": "..."}
  ```
- `pygmalion`: pygmalion
  ```json
  {"conversations": [{"role": "...", "value": "..."}]}
  ```
- `metharme`: instruction, adds additional eos tokens
  ```json
  {"prompt": "...", "generation": "..."}
  ```
- `sharegpt.load_role`: conversations where `role` is used instead of `from`
  ```json
  {"conversations": [{"role": "...", "value": "..."}]}
  ```
- `sharegpt.load_guanaco`: conversations where `from` is `prompter`/`assistant` instead of default sharegpt
  ```json
  {"conversations": [{"from": "...", "value": "..."}]}
  ```
- `sharegpt_jokes`: creates a chat where bot is asked to tell a joke, then explain why the joke is funny
  ```json
  {"conversations": [{"title": "...", "text": "...", "explanation": "..."}]}
  ```

</details>

#### How to add custom prompts

For a dataset that is preprocessed for instruction purposes:

```json
{"instruction": "...", "output": "..."}
```

You can use this example in your YAML config:

```yaml
datasets:
  - path: repo
    type:
      system_prompt: ""
      field_system: system
      format: "[INST] {instruction} [/INST]"
      no_input_format: "[INST] {instruction} [/INST]"
```

#### How to use your custom pretokenized dataset

- Do not pass a `type:`
- Columns in Dataset must be exactly `input_ids`, `attention_mask`, `labels`


### Config

See [examples](examples) for quick start. It is recommended to duplicate and modify to your needs. The most important options are:

- model
  ```yaml
  base_model: ./llama-7b-hf # local or huggingface repo
  ```
  Note: The code will load the right architecture.

- dataset
  ```yaml
  sequence_len: 2048 # max token length for prompt

  # huggingface repo
  datasets:
    - path: vicgalle/alpaca-gpt4
      type: alpaca # format from earlier

  # huggingface repo with specific configuration/subset
  datasets:
    - path: EleutherAI/pile
      name: enron_emails
      type: completion # format from earlier
      field: text # Optional[str] default: text, field to use for completion data

  # huggingface repo with multiple named configurations/subsets
  datasets:
    - path: bigcode/commitpackft
      name:
        - ruby
        - python
        - typescript
      type: ... # unimplemented custom format

  # local
  datasets:
    - path: data.jsonl # or json
      ds_type: json # see other options below
      type: alpaca

  # dataset with splits, but no train split
  dataset:
    - path: knowrohit07/know_sql
      type: context_qa.load_v2
      train_on_split: validation
  ```

- loading
  ```yaml
  load_in_4bit: true
  load_in_8bit: true
  bf16: true # require >=ampere
  fp16: true
  tf32: true # require >=ampere
  bfloat16: true # require >=ampere, use instead of bf16 when you don't want AMP (automatic mixed precision)
  float16: true # use instead of fp16 when you don't want AMP
  ```
  Note: Repo does not do 4-bit quantization.

- lora
  ```yaml
  adapter: lora # qlora or leave blank for full finetune
  lora_r: 8
  lora_alpha: 16
  lora_dropout: 0.05
  lora_target_modules:
    - q_proj
    - v_proj
  ```

<details>

<summary>All yaml options</summary>

```yaml
# This is the huggingface model that contains *.pt, *.safetensors, or *.bin files
# This can also be a relative path to a model on disk
base_model: ./llama-7b-hf
# You can specify an ignore pattern if the model repo contains more than 1 model type (*.pt, etc)
base_model_ignore_patterns:
# If the base_model repo on hf hub doesn't include configuration .json files,
# You can set that here, or leave this empty to default to base_model
base_model_config: ./llama-7b-hf
# You can specify to choose a specific model revision from huggingface hub
model_revision:
# Optional tokenizer configuration override in case you want to use a different tokenizer
# than the one defined in the base model
tokenizer_config:
# If you want to specify the type of model to load, AutoModelForCausalLM is a good choice too
model_type: AutoModelForCausalLM
# Corresponding tokenizer for the model AutoTokenizer is a good choice
tokenizer_type: AutoTokenizer
# Trust remote code for untrusted source
trust_remote_code:
# use_fast option for tokenizer loading from_pretrained, default to True
tokenizer_use_fast:
# Whether to use the legacy tokenizer setting, defaults to True
tokenizer_legacy:
# Resize the model embeddings when new tokens are added to multiples of 32
# This is reported to improve training speed on some models
resize_token_embeddings_to_32x:

# Used to identify which the model is based on
is_falcon_derived_model:
is_llama_derived_model:
# Please note that if you set this to true, `padding_side` will be set to "left" by default
is_mistral_derived_model:

# Whether you are training a 4-bit GPTQ quantized model
gptq: true
gptq_groupsize: 128 # group size
gptq_model_v1: false # v1 or v2

# This will attempt to quantize the model down to 8 bits and use adam 8 bit optimizer
load_in_8bit: true
# Use bitsandbytes 4 bit
load_in_4bit:

# Use CUDA bf16
bf16: true # bool or 'full' for `bf16_full_eval`. require >=ampere
# Use CUDA fp16
fp16: true
# Use CUDA tf32
tf32: true # require >=ampere

# No AMP (automatic mixed precision)
bfloat16: true # require >=ampere
float16: true

# A list of one or more datasets to finetune the model with
datasets:
  # HuggingFace dataset repo | "json" for local dataset, make sure to fill data_files
  - path: vicgalle/alpaca-gpt4
  # The type of prompt to use for training. [alpaca, sharegpt, gpteacher, oasst, reflection]
    type: alpaca # format | format:<prompt_style> (chat/instruct) | <prompt_strategies>.load_<load_fn>
    ds_type: # Optional[str] (json|arrow|parquet|text|csv) defines the datatype when path is a file
    data_files: # Optional[str] path to source data files
    shards: # Optional[int] number of shards to split data into
    name: # Optional[str] name of dataset configuration to load
    conversation:  # Optional[str] fastchat conversation type, only used with type: sharegpt

  # Custom user prompt
  - path: repo
    type:
      # The below are defaults. only set what's needed.
      system_prompt: ""
      system_format: "{system}"
      field_system: system
      field_instruction: instruction
      field_input: input
      field_output: output

      # Customizable to be single line or multi-line
      # 'format' can include {input}
      format: |-
        User: {instruction} {input}
        Assistant:
      # 'no_input_format' cannot include {input}
      no_input_format: "{instruction} "

      # For `completion` datsets only, uses the provided field instead of `text` column
      field:

# Axolotl attempts to save the dataset as an arrow after packing the data together so
# subsequent training attempts load faster, relative path
dataset_prepared_path: data/last_run_prepared
# Push prepared dataset to hub
push_dataset_to_hub: # repo path
# The maximum number of processes to use while preprocessing your input dataset. This defaults to `os.cpu_count()`
# if not set.
dataset_processes: # defaults to os.cpu_count() if not set
# push checkpoints to hub
hub_model_id: # repo path to push finetuned model
# how to push checkpoints to hub
# https://huggingface.co/docs/transformers/v4.31.0/en/main_classes/trainer#transformers.TrainingArguments.hub_strategy
hub_strategy:
# Whether to use hf `use_auth_token` for loading datasets. Useful for fetching private datasets
# Required to be true when used in combination with `push_dataset_to_hub`
hf_use_auth_token: # boolean
# How much of the dataset to set aside as evaluation. 1 = 100%, 0.50 = 50%, etc. 0 for no eval.
val_set_size: 0.04
# Num shards for whole dataset
dataset_shard_num:
# Index of shard to use for whole dataset
dataset_shard_idx:

# The maximum length of an input to train with, this should typically be less than 2048
# as most models have a token/context limit of 2048
sequence_len: 2048
# Pad inputs so each step uses constant sized buffers
# This will reduce memory fragmentation and may prevent OOMs, by re-using memory more efficiently
pad_to_sequence_len:
# Max sequence length to concatenate training samples together up to
# Inspired by StackLLaMA. see https://huggingface.co/blog/stackllama#supervised-fine-tuning
# FutureWarning: This will soon be DEPRECATED
max_packed_sequence_len: 1024
# Use efficient multi-packing with block diagonal attention and per sequence position_ids. Recommend set to 'true'
sample_packing:
# Set to 'false' if getting errors during eval with sample_packing on.
eval_sample_packing:
# You can set these packing optimizations AFTER starting a training at least once.
# The trainer will provide recommended values for these values.
sample_packing_eff_est:
total_num_tokens:

# If you want to use 'lora' or 'qlora' or leave blank to train all parameters in original model
adapter: lora
# If you already have a lora model trained that you want to load, put that here.
# This means after training, if you want to test the model, you should set this to the value of `lora_out_dir`.
lora_model_dir:

# LoRA hyperparameters
# For more details about the following options, see:
# https://www.anyscale.com/blog/fine-tuning-llms-lora-or-full-parameter-an-in-depth-analysis-with-llama-2
lora_r: 8
lora_alpha: 16
lora_dropout: 0.05
lora_target_modules:
  - q_proj
  - v_proj
#  - k_proj
#  - o_proj
#  - gate_proj
#  - down_proj
#  - up_proj
lora_target_linear: # If true, will target all linear layers

# If you added new tokens to the tokenizer, you may need to save some LoRA modules because they need to know the new tokens.
# For LLaMA and Mistral, you need to save `embed_tokens` and `lm_head`. It may vary for other models.
# `embed_tokens` converts tokens to embeddings, and `lm_head` converts embeddings to token probabilities.
# https://github.com/huggingface/peft/issues/334#issuecomment-1561727994
lora_modules_to_save:
#  - embed_tokens
#  - lm_head

# Once you complete training, the model will be saved to the following directory.
# If you merge the adapter to the base model, a subdirectory `merged` will be created under this directory.
# Make sure `lora_model_dir` points to this directory if you want to use the trained model.
lora_out_dir:
lora_fan_in_fan_out: false

# ReLoRA configuration
# Must use either 'lora' or 'qlora' adapter, and does not support fsdp or deepspeed
relora_steps: # Number of steps per ReLoRA restart
relora_warmup_steps: # Number of per-restart warmup steps
relora_cpu_offload: # True to perform lora weight merges on cpu during restarts, for modest gpu memory savings

# wandb configuration if you're using it
wandb_mode: # "offline" to save run metadata locally and not sync to the server, "disabled" to turn off wandb
wandb_project: # Your wandb project name
wandb_entity: # A wandb Team name if using a Team
wandb_watch:
wandb_run_id: # Set the name of your wandb run
wandb_log_model: # "checkpoint" to log model to wandb Artifacts every `save_steps` or "end" to log only at the end of training

# Where to save the full-finetuned model to
output_dir: ./completed-model

# Whether to use torch.compile and which backend to use
torch_compile:  # bool
torch_compile_backend:  # Optional[str]

# Training hyperparameters

# If greater than 1, backpropagation will be skipped and the gradients will be accumulated for the given number of steps.
gradient_accumulation_steps: 1
# The number of samples to include in each batch. This is the number of samples sent to each GPU.
micro_batch_size: 2
eval_batch_size:
num_epochs: 3
warmup_steps: 100
learning_rate: 0.00003
lr_quadratic_warmup:
logging_steps:
save_strategy: # Set to `no` to skip checkpoint saves
save_steps: # Leave empty to save at each epoch
eval_steps: # Leave empty to eval at each epoch
save_total_limit: # Checkpoints saved at a time
# Maximum number of iterations to train for. It precedes num_epochs which means that
# if both are set, num_epochs will not be guaranteed.
# e.g., when 1 epoch is 1000 steps => `num_epochs: 2` and `max_steps: 100` will train for 100 steps
max_steps:

eval_table_size: # Approximate number of predictions sent to wandb depending on batch size. Enabled above 0. Default is 0
eval_table_max_new_tokens: # Total number of tokens generated for predictions sent to wandb. Default is 128

# Save model as safetensors (require safetensors package)
save_safetensors:

# Whether to mask out or include the human's prompt from the training labels
train_on_inputs: false
# Group similarly sized data to minimize padding.
# May be slower to start, as it must download and sort the entire dataset.
# Note that training loss may have an oscillating pattern with this enabled.
group_by_length: false

# Whether to use gradient checkpointing https://huggingface.co/docs/transformers/v4.18.0/en/performance#gradient-checkpointing
gradient_checkpointing: false

# Stop training after this many evaluation losses have increased in a row
# https://huggingface.co/transformers/v4.2.2/_modules/transformers/trainer_callback.html#EarlyStoppingCallback
early_stopping_patience: 3

# Specify a scheduler and kwargs to use with the optimizer
lr_scheduler: # 'one_cycle' | 'log_sweep' | empty for cosine
lr_scheduler_kwargs:

# For one_cycle optim
lr_div_factor: # Learning rate div factor

# For log_sweep optim
log_sweep_min_lr:
log_sweep_max_lr:

# Specify optimizer
# Valid values are driven by the Transformers OptimizerNames class, see:
# https://github.com/huggingface/transformers/blob/95b374952dc27d8511541d6f5a4e22c9ec11fb24/src/transformers/training_args.py#L134
#
# Note that not all optimizers may be available in your environment, ex: 'adamw_anyprecision' is part of
# torchdistx, 'adamw_bnb_8bit' is part of bnb.optim.Adam8bit, etc. When in doubt, it is recommended to start with the optimizer used
# in the examples/ for your model and fine-tuning use case.
#
# Valid values for 'optimizer' include:
# - adamw_hf
# - adamw_torch
# - adamw_torch_fused
# - adamw_torch_xla
# - adamw_apex_fused
# - adafactor
# - adamw_anyprecision
# - sgd
# - adagrad
# - adamw_bnb_8bit
# - lion_8bit
# - lion_32bit
# - paged_adamw_32bit
# - paged_adamw_8bit
# - paged_lion_32bit
# - paged_lion_8bit
optimizer:
# Specify weight decay
weight_decay:
# adamw hyperparams
adam_beta1:
adam_beta2:
adam_epsilon:
# Gradient clipping max norm
max_grad_norm:

# Augmentation techniques
# NEFT https://arxiv.org/abs/2310.05914, set this to a number (paper default is 5) to add noise to embeddings
# currently only supported on Llama and Mistral
noisy_embedding_alpha:

# Whether to bettertransformers
flash_optimum:
# Whether to use xformers attention patch https://github.com/facebookresearch/xformers:
xformers_attention:
# Whether to use flash attention patch https://github.com/Dao-AILab/flash-attention:
flash_attention:
flash_attn_cross_entropy:  # Whether to use flash-attention cross entropy implementation - advanced use only
flash_attn_rms_norm:  # Whether to use flash-attention rms norm implementation - advanced use only
# Whether to use scaled-dot-product attention
# https://pytorch.org/docs/stable/generated/torch.nn.functional.scaled_dot_product_attention.html
sdp_attention:
# Landmark attention (only llama)
landmark_attention:
# xpos RoPE see https://github.com/kaiokendev/cutoff-len-is-context-len/blob/main/util/xpos_rope_llama_monkey_patch.py
# LLaMA only
xpos_rope:
# RoPE Scaling https://github.com/huggingface/transformers/pull/24653
rope_scaling:
  type: # linear | dynamic
  factor: # float

# Resume from a specific checkpoint dir
resume_from_checkpoint:
# If resume_from_checkpoint isn't set and you simply want it to start where it left off.
# Be careful with this being turned on between different models.
auto_resume_from_checkpoints: false

# Don't mess with this, it's here for accelerate and torchrun
local_rank:

# Add or change special tokens.
# If you add tokens here, you don't need to add them to the `tokens` list.
special_tokens:
  # bos_token: "<s>"
  # eos_token: "</s>"
  # unk_token: "<unk>"

# Add extra tokens.
tokens:

# FSDP
fsdp:
fsdp_config:

# Deepspeed config path. e.g., deepspeed/zero3.json
deepspeed:

# Advanced DDP Arguments
ddp_timeout:
ddp_bucket_cap_mb:
ddp_broadcast_buffers:

# Path to torch distx for optim 'adamw_anyprecision'
torchdistx_path:

# Set to HF dataset for type: 'completion' for streaming instead of pre-tokenize
pretraining_dataset:

# Debug mode
debug:

# Seed
seed:

# Allow overwrite yml config using from cli
strict:
```

</details>

<details>
<summary> Understanding of batch size and gradient accumulation steps </summary>
<br/>
Gradient accumulation means accumulating gradients over several mini-batches and updating the model weights afterward. When the samples in each batch are diverse, this technique doesn't significantly impact learning.

This method allows for effective training with larger effective batch sizes without needing proportionally larger memory. Here's why:

1. **Memory Consumption with Batch Size**: The primary reason increasing the batch size impacts memory is due to the storage requirements for intermediate activations. When you forward propagate a batch through a network, you have to store the activations at each layer for each sample in the batch, because these activations are used during backpropagation to compute gradients. Therefore, larger batches mean more activations, leading to greater GPU memory consumption.

2. **Gradient Accumulation**: With gradient accumulation, you're effectively simulating a larger batch size by accumulating gradients over several smaller batches (or micro-batches). However, at any given time, you're only forward and backward propagating a micro-batch. This means you only store activations for the micro-batch, not the full accumulated batch. As a result, you can simulate the effect of a larger batch size without the memory cost of storing activations for a large batch.

**Example 1:**
Micro batch size: 3
Gradient accumulation steps: 2
Number of GPUs: 3
Total batch size = 3 * 2 * 3 = 18

```
| GPU 1          | GPU 2          | GPU 3          |
|----------------|----------------|----------------|
| S1, S2, S3     | S4, S5, S6     | S7, S8, S9     |
| e1, e2, e3     | e4, e5, e6     | e7, e8, e9     |
|----------------|----------------|----------------|
| β†’ (accumulate) | β†’ (accumulate) | β†’ (accumulate) |
|----------------|----------------|----------------|
| S10, S11, S12  | S13, S14, S15  | S16, S17, S18  |
| e10, e11, e12  | e13, e14, e15  | e16, e17, e18  |
|----------------|----------------|----------------|
| β†’ (apply)      | β†’ (apply)      | β†’ (apply)      |

Accumulated gradient for the weight w1 after the second iteration (considering all GPUs):
Total gradient for w1 = e1 + e2 + e3 + e4 + e5 + e6 + e7 + e8 + e9 + e10 + e11 + e12 + e13 + e14 + e15 + e16 + e17 + e18

Weight update for w1:
w1_new = w1_old - learning rate x (Total gradient for w1 / 18)
```

**Example 2:**
Micro batch size: 2
Gradient accumulation steps: 1
Number of GPUs: 3
Total batch size = 2 * 1 * 3 = 6

```
| GPU 1     | GPU 2     | GPU 3     |
|-----------|-----------|-----------|
| S1, S2    | S3, S4    | S5, S6    |
| e1, e2    | e3, e4    | e5, e6    |
|-----------|-----------|-----------|
| β†’ (apply) | β†’ (apply) | β†’ (apply) |

Accumulated gradient for the weight w1 (considering all GPUs):
Total gradient for w1 = e1 + e2 + e3 + e4 + e5 + e6

Weight update for w1:
w1_new = w1_old - learning rate Γ— (Total gradient for w1 / 6)
```

</details>

### Train

Run
```bash
accelerate launch -m axolotl.cli.train your_config.yml
```

#### Multi-GPU

You can optionally pre-tokenize dataset with the following before finetuning:
```bash
CUDA_VISIBLE_DEVICES="" accelerate launch -m axolotl.cli.train your_config.yml --prepare_ds_only
```

##### Config

- llama FSDP
```yaml
fsdp:
  - full_shard
  - auto_wrap
fsdp_config:
  fsdp_offload_params: true
  fsdp_state_dict_type: FULL_STATE_DICT
  fsdp_transformer_layer_cls_to_wrap: LlamaDecoderLayer
```

##### Weights & Biases Logging

- wandb options
```yaml
wandb_mode:
wandb_project:
wandb_entity:
wandb_watch:
wandb_run_id:
wandb_log_model:
```

### Training with Deepspeed

Deepspeed is an optimization suite for multi-gpu systems allowing you to train much larger models than you
might typically be able to fit into your GPU's VRAM. More information about the various optimization types
for deepspeed is available at https://huggingface.co/docs/accelerate/main/en/usage_guides/deepspeed#what-is-integrated

We provide several default deepspeed JSON configurations for ZeRO stage 1, 2, and 3.

```shell
accelerate launch -m axolotl.cli.train examples/llama-2/config.py --deepspeed deepspeed/zero1.json
```

or

```yaml
deepspeed: deepspeed/zero1.json
```

### Inference

Pass the appropriate flag to the train command:

- Pretrained LORA:
  ```bash
  python -m axolotl.cli.inference examples/your_config.yml --lora_model_dir="./lora-output-dir"
  ```
- Full weights finetune:
  ```bash
  python -m axolotl.cli.inference examples/your_config.yml --base_model="./completed-model"
  ```
- Full weights finetune w/ a prompt from a text file:
  ```bash
  cat /tmp/prompt.txt | python -m axolotl.cli.inference examples/your_config.yml \
    --base_model="./completed-model" --prompter=None --load_in_8bit=True
  ```

Please use `--sample_packing False` if you have it on and receive the error similar to below:

> RuntimeError: stack expects each tensor to be equal size, but got [1, 32, 1, 128] at entry 0 and [1, 32, 8, 128] at entry 1

### Merge LORA to base

Add below flag to train command above

```bash
python3 -m axolotl.cli.merge_lora examples/your_config.yml --lora_model_dir="./completed-model" --load_in_8bit=False --load_in_4bit=False
```

If you run out of CUDA memory, you can try to merge in system RAM with

```bash
CUDA_VISIBLE_DEVICES="" python3 -m axolotl.cli.merge_lora ...
```

## Common Errors 🧰

> If you encounter a 'Cuda out of memory' error, it means your GPU ran out of memory during the training process. Here's how to resolve it:

Please reduce any below
  - `micro_batch_size`
  - `eval_batch_size`
  - `gradient_accumulation_steps`
  - `sequence_len`

> `failed (exitcode: -9)`

Usually means your system has run out of system memory.
Similarly, you should consider reducing the same settings as when you run out of VRAM.
Additionally, look into upgrading your system RAM which should be simpler than GPU upgrades.

> RuntimeError: expected scalar type Float but found Half

Try set `fp16: true`

> NotImplementedError: No operator found for `memory_efficient_attention_forward` ...

Try to turn off xformers.

> accelerate config missing

It's safe to ignore it.

> NCCL Timeouts during training

See the [NCCL](docs/nccl.md) guide.

## Need help? πŸ™‹β™‚οΈ

Join our [Discord server](https://discord.gg/HhrNrHJPRb) where we can help you

## Badge ❀🏷️

Building something cool with Axolotl? Consider adding a badge to your model card.

```markdown
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
```

[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)

## Community Showcase

Check out some of the projects and models that have been built using Axolotl! Have a model you'd like to add to our Community Showcase? Open a PR with your model.

Open Access AI Collective
- [Minotaur 13b](https://huggingface.co/openaccess-ai-collective/minotaur-13b)
- [Manticore 13b](https://huggingface.co/openaccess-ai-collective/manticore-13b)
- [Hippogriff 30b](https://huggingface.co/openaccess-ai-collective/hippogriff-30b-chat)

PocketDoc Labs
- [Dan's PersonalityEngine 13b LoRA](https://huggingface.co/PocketDoc/Dans-PersonalityEngine-13b-LoRA)

## Contributing 🀝

Please read the [contributing guide](./.github/CONTRIBUTING.md)

Bugs? Please check the [open issues](https://github.com/OpenAccess-AI-Collective/axolotl/issues/bug) else create a new Issue.

PRs are **greatly welcome**!

Please run below to setup env
```bash
pip3 install -r requirements-dev.txt -r requirements-tests.txt
pre-commit install

# test
pytest tests/
```