File size: 11,902 Bytes
5062eca 7657632 e303d64 0d6708b 7657632 0d6708b 7657632 1210dc8 7657632 2bc1a5b 37293dc 2bc1a5b 1a82082 0d6708b e303d64 7657632 09f1543 7657632 e303d64 7657632 e303d64 2bc1a5b 5062eca 0d6708b 2bc1a5b 37293dc 2bc1a5b 0d6708b bde3c5a 0d6708b 1210dc8 1a82082 1210dc8 1a82082 1210dc8 1a82082 1210dc8 1a82082 ab5cd28 1210dc8 1a82082 1210dc8 e303d64 7b55fe6 e303d64 7b55fe6 e303d64 7b55fe6 e303d64 7657632 09f1543 7657632 09f1543 7657632 42f9642 7657632 42f9642 7657632 42f9642 7657632 42f9642 7657632 42f9642 7657632 42f9642 7657632 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 |
"""Callbacks for Trainer class"""
from __future__ import annotations
import logging
import os
from typing import TYPE_CHECKING, Dict, List
import evaluate
import numpy as np
import pandas as pd
import torch
import torch.distributed as dist
from datasets import load_dataset
from optimum.bettertransformer import BetterTransformer
from tqdm import tqdm
from transformers import (
TrainerCallback,
TrainerControl,
TrainerState,
TrainingArguments,
)
from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR, IntervalStrategy
from axolotl.utils.bench import log_gpu_memory_usage
from axolotl.utils.distributed import (
barrier,
gather_scalar_from_all_ranks,
get_world_size,
is_distributed,
is_main_process,
zero_first,
)
if TYPE_CHECKING:
from axolotl.utils.trainer import AxolotlTrainingArguments
LOG = logging.getLogger("axolotl.callbacks")
IGNORE_INDEX = -100
class SavePeftModelCallback(TrainerCallback): # pylint: disable=too-few-public-methods
"""Callback to save the PEFT adapter"""
def on_save(
self,
args: TrainingArguments,
state: TrainerState,
control: TrainerControl,
**kwargs,
):
checkpoint_folder = os.path.join(
args.output_dir,
f"{PREFIX_CHECKPOINT_DIR}-{state.global_step}",
)
peft_model_path = os.path.join(checkpoint_folder, "adapter_model")
kwargs["model"].save_pretrained(
peft_model_path, save_safetensors=args.save_safetensors
)
return control
class SaveBetterTransformerModelCallback(
TrainerCallback
): # pylint: disable=too-few-public-methods
"""Callback to save the BetterTransformer wrapped model"""
def on_step_end(
self,
args: TrainingArguments,
state: TrainerState,
control: TrainerControl,
**kwargs,
):
# Save
if (
args.save_strategy == IntervalStrategy.STEPS
and args.save_steps > 0
and state.global_step % args.save_steps == 0
):
control.should_save = True
if control.should_save:
checkpoint_folder = os.path.join(
args.output_dir,
f"{PREFIX_CHECKPOINT_DIR}-{state.global_step}",
)
model = BetterTransformer.reverse(kwargs["model"])
model.save_pretrained(checkpoint_folder)
# FIXME - need to cleanup old checkpoints
# since we're saving here, we don't need the trainer loop to attempt to save too b/c
# the trainer will raise an exception since it can't save a BetterTransformer wrapped model
control.should_save = False
return control
class GPUStatsCallback(
TrainerCallback
): # pylint: disable=too-few-public-methods disable=unused-argument
"""Callback to track GPU utilization"""
def __init__(self, cfg):
self.cfg = cfg
self.logged = False
def on_step_end(
self,
args: TrainingArguments,
state: TrainerState,
control: TrainerControl,
**kwargs,
):
if not self.logged and state.global_step > 1:
log_gpu_memory_usage(LOG, "while training", self.cfg.device)
self.logged = True
return control
def bench_eval_callback_factory(trainer, tokenizer):
accuracy = evaluate.load("accuracy")
abcd_idx = [
tokenizer("A", add_special_tokens=False).input_ids[0],
tokenizer("B", add_special_tokens=False).input_ids[0],
tokenizer("C", add_special_tokens=False).input_ids[0],
tokenizer("D", add_special_tokens=False).input_ids[0],
tokenizer("E", add_special_tokens=False).input_ids[0],
tokenizer("F", add_special_tokens=False).input_ids[0],
tokenizer("G", add_special_tokens=False).input_ids[0],
]
bench_split = "eval"
def transform_bench_subject(example):
# Split on ':' and trim whitespace
parts = example["subject"].split(":")
first_part = (
parts[0].strip().lower().replace("-", "_")
) # Lowercase the first part
second_part = (
parts[1].strip().replace("-", "_") if len(parts) > 1 else "all"
) # Replace hyphens with underscores
# Return the transformed values
return {"name": first_part, "subject": second_part}
if trainer.args.bench_dataset == "mmlu-zs":
bench_dataset = load_dataset(
"openaccess-ai-collective/mmlu-evals",
data_files={
"eval": "zero_shot_mmlu_val.json",
"test": "zero_shot_mmlu_test.json",
},
)
# bench_dataset = bench_dataset.remove_columns("subject")
# MMLU Five-shot (Eval/Test only)
elif trainer.args.bench_dataset in ["mmlu", "mmlu-fs"]:
bench_dataset = load_dataset(
"openaccess-ai-collective/mmlu-evals",
data_files={
"eval": "five_shot_mmlu_val.json",
"test": "five_shot_mmlu_test.json",
},
)
# bench_dataset = bench_dataset.remove_columns('subject')
elif "/" in trainer.args.bench_dataset:
bench_ds = trainer.args.bench_dataset
bench_ds_name = "/".join(bench_ds.split("/", 2)[:2])
bench_ds_data_file = "/".join(bench_ds.split("/", 2)[2:])
bench_dataset = load_dataset(
bench_ds_name,
data_files={
"eval": bench_ds_data_file,
},
)
bench_dataset["eval"] = bench_dataset["eval"].map(transform_bench_subject)
else:
raise ValueError(
f"unhandled value `{trainer.args.bench_dataset}` for bench_dataset training args"
)
bench_dataset = bench_dataset[trainer.args.bench_split]
if trainer.args.max_bench_samples is not None:
bench_dataset = bench_dataset.select(range(trainer.args.max_bench_samples))
def tokenize_evals(example):
source = f"{tokenizer.bos_token}{example['input']}"
target = f"{example['output']}{tokenizer.eos_token}"
tokenized_source = tokenizer(
source,
max_length=2048,
truncation=True,
add_special_tokens=False,
)
tokenized_target = tokenizer(
target,
max_length=2048,
truncation=True,
add_special_tokens=False,
)
input_ids = tokenized_source["input_ids"] + tokenized_target["input_ids"]
labels = [IGNORE_INDEX] * len(tokenized_source["input_ids"]) + tokenized_target[
"input_ids"
]
return {
"input_ids": input_ids,
"labels": labels,
"subject": example["subject"],
}
with zero_first(is_main_process()):
bench_dataset = bench_dataset.map(tokenize_evals)
bench_dataset = bench_dataset.filter(lambda x: x["labels"][-2] in abcd_idx)
class BenchEvalCallback(TrainerCallback):
"""
TrainerCallback that runs the MMLU evals
"""
def on_evaluate(
self,
args: AxolotlTrainingArguments,
state: TrainerState, # pylint: disable=unused-argument
control: TrainerControl, # pylint: disable=unused-argument
metrics: Dict[str, float], # pylint: disable=unused-argument
**kwargs, # pylint: disable=unused-argument
):
data_loader = trainer.get_bench_dataloader(
bench_dataset.remove_columns(["input", "subject", "output", "name"])
)
trainer.model.eval()
preds, refs = [], []
loss_bench = 0
for batch in tqdm(data_loader, total=len(data_loader)):
(loss, logits, labels) = trainer.prediction_step(
trainer.model,
batch,
prediction_loss_only=False,
)
# There are two tokens, the output, and eos token.
for i, logit in enumerate(logits):
label_non_zero_id = (batch["labels"][i] != IGNORE_INDEX).nonzero()[
0
][0]
logit_abcd = logit[label_non_zero_id - 1][abcd_idx]
preds.append(torch.argmax(logit_abcd).item())
labels = labels[labels != IGNORE_INDEX].view(-1, 2)[:, 0]
refs += [
abcd_idx.index(label) if label in abcd_idx else -1
for label in labels.tolist()
]
loss_bench += loss.item()
# Extract results by subject.
bench_name = bench_dataset["name"]
bench_names: dict = {s: {"refs": [], "preds": []} for s in set(bench_name)}
for s, p, r in zip(bench_name, preds, refs): # pylint: disable=invalid-name
bench_names[s]["preds"].append(p)
bench_names[s]["refs"].append(r)
barrier()
local_bench_names = bench_names
gathered_bench_names: List[Dict] = [{} for _ in range(get_world_size())]
# Gather results from all GPUs to GPU 0
loss_bench_ranks = gather_scalar_from_all_ranks(
lambda: loss_bench, get_world_size()
)
len_data_loader_ranks = gather_scalar_from_all_ranks(
lambda: len(data_loader), get_world_size()
)
if is_distributed() and not is_main_process():
dist.gather_object(local_bench_names, dst=0)
else:
if is_distributed():
dist.gather_object(local_bench_names, gathered_bench_names, dst=0)
else:
gathered_bench_names = [local_bench_names]
bench_loss = sum(loss_bench_ranks) / sum(len_data_loader_ranks)
results = {f"{bench_split}_bench_loss": bench_loss}
# Combine results from all GPUs
combined_bench_names: Dict[str, Dict[str, List]] = {}
for bench_name in gathered_bench_names:
for name, data in bench_name.items():
if name not in combined_bench_names:
combined_bench_names[name] = {"refs": [], "preds": []}
combined_bench_names[name]["refs"].extend(data["refs"])
combined_bench_names[name]["preds"].extend(data["preds"])
bench_scores = []
bench_refs = []
bench_preds = []
for (
bench_name
) in combined_bench_names: # pylint: disable=consider-using-dict-items
bench_score = accuracy.compute(
references=combined_bench_names[bench_name]["refs"],
predictions=combined_bench_names[bench_name]["preds"],
)["accuracy"]
bench_refs.extend(combined_bench_names[bench_name]["refs"])
bench_preds.extend(combined_bench_names[bench_name]["preds"])
if not pd.isna(bench_score):
results[
f"{bench_split}_bench_accuracy_{bench_name}"
] = bench_score
bench_scores.append(bench_score)
else:
results[f"{bench_split}_bench_accuracy_{bench_name}"] = 0.0
bench_scores.append(0.0)
results[f"{bench_split}_bench_average_accuracy"] = np.mean(bench_scores)
results[f"{bench_split}_bench_total_accuracy"] = accuracy.compute(
references=bench_refs, predictions=bench_preds
)["accuracy"]
trainer.log(results)
return BenchEvalCallback
|