File size: 8,881 Bytes
8d959a7 ce24f5e 8d959a7 ce24f5e 8d959a7 ce24f5e 8d959a7 ce24f5e 8d959a7 ce24f5e 8d959a7 ce24f5e 8d959a7 ce24f5e 8d959a7 ce24f5e 8d959a7 ce24f5e 8d959a7 ce24f5e 8d959a7 ce24f5e 8d959a7 ce24f5e 8d959a7 ce24f5e 8d959a7 ce24f5e 8d959a7 ce24f5e 8d959a7 ce24f5e 8d959a7 ce24f5e 8d959a7 ce24f5e 8d959a7 ce24f5e 8d959a7 ce24f5e 8d959a7 ce24f5e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 |
import math
import os
import signal
import sys
from pathlib import Path
import bitsandbytes as bnb
import fire
import torch
import transformers
import yaml
from attrdict import AttrDict
from datasets import load_dataset, IterableDataset, Dataset
from peft import (
LoraConfig,
get_peft_model,
prepare_model_for_int8_training, get_peft_model_state_dict,
)
from torch import nn
from transformers import AutoModelForCausalLM, AutoTokenizer
# add src to the pythonpath so we don't need to pip install this
from transformers.trainer_pt_utils import get_parameter_names
project_root = os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))
src_dir = os.path.join(project_root, 'src')
sys.path.insert(0, src_dir)
from axolotl.datasets import TokenizedPromptDataset, ConstantLengthDataset
from axolotl.prompt_tokenizers import AlpacaPromptTokenizingStrategy, ShareGPTPromptTokenizingStrategy, \
LLAMA_DEFAULT_PAD_TOKEN, GPTeacherPromptTokenizingStrategy
from axolotl.prompters import AlpacaPrompter, GPTeacherPrompter, ShareGPTPrompter
def setup_wandb_env_vars(cfg):
if len(cfg.wandb_project) > 0:
os.environ["WANDB_PROJECT"] = cfg.wandb_project
cfg.use_wandb = True
if cfg.wandb_watch and len(cfg.wandb_watch) > 0:
os.environ["WANDB_WATCH"] = cfg.wandb_watch
if cfg.wandb_log_model and len(cfg.wandb_log_model) > 0:
os.environ["WANDB_LOG_MODEL"] = cfg.wandb_log_model
def load_model(base_model, model_type, tokenizer_type, cfg, adapter="lora"):
if adapter != "lora":
raise NotImplementedError(f"{adapter} peft adapter not available")
try:
model = getattr(transformers, model_type).from_pretrained(
base_model,
load_in_8bit=cfg.load_in_8bit,
torch_dtype=torch.float16 if cfg.load_in_8bit else torch.float32,
device_map=cfg.device_map,
)
except:
model = AutoModelForCausalLM.from_pretrained(
base_model,
load_in_8bit=cfg.load_in_8bit,
torch_dtype=torch.float16 if cfg.load_in_8bit else torch.float32,
device_map=cfg.device_map,
)
try:
tokenizer = getattr(transformers, tokenizer_type).from_pretrained(model)
except:
tokenizer = AutoTokenizer.from_pretrained(base_model)
if tokenizer.__class__.__name__ == "LlamaTokenizer":
tokenizer.pad_token = LLAMA_DEFAULT_PAD_TOKEN
if tokenizer.__class__.__name__ == "GPTNeoXTokenizerFast":
tokenizer.add_special_tokens({'pad_token': '[PAD]'})
os.environ["TOKENIZERS_PARALLELISM"] = "false"
if cfg.load_in_8bit:
model = prepare_model_for_int8_training(model)
lora_config = LoraConfig(
r=cfg.lora_r,
lora_alpha=cfg.lora_alpha,
target_modules=cfg.lora_target_modules,
lora_dropout=cfg.lora_dropout,
fan_in_fan_out=cfg.lora_fan_in_fan_out,
bias="none",
task_type="CAUSAL_LM",
)
model = get_peft_model(model, lora_config)
if cfg.ddp:
model.to(f"cuda:{cfg.local_rank}")
# TODO resume_from_checkpoint handling
model.print_trainable_parameters()
return model, tokenizer, lora_config
def train(
config: Path = Path('configs/pythia_1_2B_alpaca.yml'),
**kwargs,
):
# load the config from the yaml file
with open(config, 'r') as f:
cfg: AttrDict = AttrDict(yaml.load(f, Loader=yaml.Loader))
# if there are any options passed in the cli, if it is something that seems valid from the yaml,
# then overwrite the value
for k, v in enumerate(kwargs):
if k in cfg:
cfg.k = v
# setup some derived config / hyperparams
cfg.gradient_accumulation_steps = cfg.batch_size // cfg.micro_batch_size
cfg.device_map = "auto"
cfg.world_size = int(os.environ.get("WORLD_SIZE", 1))
cfg.local_rank = int(os.environ.get("LOCAL_RANK", 0))
cfg.ddp = cfg.world_size != 1
if cfg.ddp:
cfg.device_map = {"": int(os.environ.get("LOCAL_RANK", 0))}
cfg.gradient_accumulation_steps = cfg.gradient_accumulation_steps // cfg.world_size
setup_wandb_env_vars(cfg)
# Load the model and tokenizer
model, tokenizer, lora_config = load_model(cfg.base_model, cfg.model_type, cfg.tokenizer_type, cfg, adapter=cfg.adapter)
datasets = []
for d in cfg.datasets:
ds: IterableDataset = load_dataset("json", data_files=d.path, streaming=True, split=None)
if d.type == "alpaca":
ds_strategy = AlpacaPromptTokenizingStrategy(AlpacaPrompter(), tokenizer, cfg.train_on_inputs, cfg.sequence_len)
ds_wrapper = TokenizedPromptDataset(ds_strategy, ds["train"])
datasets.append(ds_wrapper)
elif d.type == "gpteacher":
ds_strategy = GPTeacherPromptTokenizingStrategy(GPTeacherPrompter(), tokenizer, cfg.train_on_inputs, cfg.sequence_len)
ds_wrapper = TokenizedPromptDataset(ds_strategy, ds["train"])
datasets.append(ds_wrapper)
elif d.type == "sharegpt":
ds_strategy = ShareGPTPromptTokenizingStrategy(ShareGPTPrompter(), tokenizer, cfg.train_on_inputs, cfg.sequence_len)
ds_wrapper = TokenizedPromptDataset(ds_strategy, ds["train"])
datasets.append(ds_wrapper)
constant_len_dataset = ConstantLengthDataset(tokenizer, datasets, seq_length=cfg.sequence_len)
constant_len_dataset = Dataset.from_list([_ for _ in constant_len_dataset]).train_test_split(
test_size=cfg.val_set_size, shuffle=True, seed=42
)
print(constant_len_dataset)
train_dataset = constant_len_dataset["train"]
eval_dataset = constant_len_dataset["test"]
total_num_steps = int(math.ceil(len(train_dataset) * cfg.num_epochs / cfg.batch_size))
warmup_steps = min(int(0.03 * total_num_steps), 100)
logging_steps = min(int(0.005 * total_num_steps), 10)
save_steps = eval_steps = min(int(0.05 * total_num_steps), 200)
training_args = transformers.TrainingArguments(
per_device_train_batch_size=cfg.micro_batch_size,
gradient_accumulation_steps=cfg.gradient_accumulation_steps,
warmup_steps=warmup_steps,
num_train_epochs=cfg.num_epochs,
learning_rate=cfg.learning_rate,
bf16=cfg.bf16,
tf32=cfg.tf32,
logging_steps=logging_steps,
evaluation_strategy="steps" if cfg.val_set_size > 0 else "no",
save_strategy="steps",
eval_steps=eval_steps if cfg.val_set_size > 0 else None,
save_steps=save_steps,
output_dir=cfg.output_dir,
save_total_limit=3,
load_best_model_at_end=True if cfg.val_set_size > 0 else False,
ddp_find_unused_parameters=False if cfg.ddp else None,
group_by_length=cfg.group_by_length,
report_to="wandb" if cfg.use_wandb else None,
run_name=cfg.wandb_run_name if cfg.use_wandb else None,
)
decay_parameters = get_parameter_names(model, [nn.LayerNorm])
decay_parameters = [name for name in decay_parameters if "bias" not in name]
optimizer_grouped_parameters = [
{
"params": [p for n, p in model.named_parameters() if n in decay_parameters],
"weight_decay": training_args.weight_decay,
},
{
"params": [p for n, p in model.named_parameters() if n not in decay_parameters],
"weight_decay": 0.0,
},
]
adam_bnb_optim = bnb.optim.Adam8bit(
optimizer_grouped_parameters,
betas=(training_args.adam_beta1, training_args.adam_beta2),
eps=training_args.adam_epsilon,
lr=training_args.learning_rate,
)
lr_scheduler = transformers.get_cosine_schedule_with_warmup(
adam_bnb_optim,
training_args.warmup_steps,
total_num_steps,
)
trainer = transformers.Trainer(
model=model,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
args=training_args,
optimizers=(adam_bnb_optim, lr_scheduler),
data_collator=transformers.DataCollatorForSeq2Seq(
tokenizer, pad_to_multiple_of=8, return_tensors="pt", padding=True
),
)
model.config.use_cache = False
old_state_dict = model.state_dict
model.state_dict = (
lambda self, *_, **__: get_peft_model_state_dict(
self, old_state_dict()
)
).__get__(model, type(model))
if torch.__version__ >= "2" and sys.platform != "win32":
model = torch.compile(model)
signal.signal(signal.SIGINT, lambda signal, frame: (
model.save_pretrained(cfg.output_dir),
exit(0)
))
# go ahead and presave the adapter config
lora_config.save_pretrained(cfg.output_dir)
trainer.train(resume_from_checkpoint=cfg.resume_from_checkpoint)
model.save_pretrained(cfg.output_dir)
if __name__ == "__main__":
fire.Fire(train)
|