File size: 8,881 Bytes
8d959a7
ce24f5e
8d959a7
ce24f5e
 
 
8d959a7
ce24f5e
 
 
 
 
8d959a7
ce24f5e
 
 
8d959a7
ce24f5e
8d959a7
ce24f5e
 
 
8d959a7
 
ce24f5e
 
 
 
8d959a7
ce24f5e
 
 
 
 
 
 
 
8d959a7
ce24f5e
8d959a7
ce24f5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d959a7
 
 
 
ce24f5e
 
 
 
 
 
 
 
8d959a7
ce24f5e
 
 
 
 
 
 
 
 
 
8d959a7
ce24f5e
 
 
 
 
 
 
 
8d959a7
ce24f5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d959a7
ce24f5e
 
8d959a7
ce24f5e
 
8d959a7
ce24f5e
 
 
8d959a7
ce24f5e
 
 
8d959a7
ce24f5e
8d959a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce24f5e
8d959a7
ce24f5e
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import math
import os
import signal
import sys
from pathlib import Path

import bitsandbytes as bnb
import fire
import torch
import transformers
import yaml
from attrdict import AttrDict
from datasets import load_dataset, IterableDataset, Dataset
from peft import (
    LoraConfig,
    get_peft_model,
    prepare_model_for_int8_training, get_peft_model_state_dict,
)
from torch import nn
from transformers import AutoModelForCausalLM, AutoTokenizer

# add src to the pythonpath so we don't need to pip install this
from transformers.trainer_pt_utils import get_parameter_names

project_root = os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))
src_dir = os.path.join(project_root, 'src')
sys.path.insert(0, src_dir)

from axolotl.datasets import TokenizedPromptDataset, ConstantLengthDataset
from axolotl.prompt_tokenizers import AlpacaPromptTokenizingStrategy, ShareGPTPromptTokenizingStrategy, \
    LLAMA_DEFAULT_PAD_TOKEN, GPTeacherPromptTokenizingStrategy
from axolotl.prompters import AlpacaPrompter, GPTeacherPrompter, ShareGPTPrompter

def setup_wandb_env_vars(cfg):
    if len(cfg.wandb_project) > 0:
        os.environ["WANDB_PROJECT"] = cfg.wandb_project
        cfg.use_wandb = True
        if cfg.wandb_watch and len(cfg.wandb_watch) > 0:
            os.environ["WANDB_WATCH"] = cfg.wandb_watch
        if cfg.wandb_log_model and len(cfg.wandb_log_model) > 0:
            os.environ["WANDB_LOG_MODEL"] = cfg.wandb_log_model


def load_model(base_model, model_type, tokenizer_type, cfg, adapter="lora"):
    if adapter != "lora":
        raise NotImplementedError(f"{adapter} peft adapter not available")
    try:
        model = getattr(transformers, model_type).from_pretrained(
            base_model,
            load_in_8bit=cfg.load_in_8bit,
            torch_dtype=torch.float16 if cfg.load_in_8bit else torch.float32,
            device_map=cfg.device_map,
        )
    except:
        model = AutoModelForCausalLM.from_pretrained(
            base_model,
            load_in_8bit=cfg.load_in_8bit,
            torch_dtype=torch.float16 if cfg.load_in_8bit else torch.float32,
            device_map=cfg.device_map,
        )

    try:
        tokenizer = getattr(transformers, tokenizer_type).from_pretrained(model)
    except:
        tokenizer = AutoTokenizer.from_pretrained(base_model)

    if tokenizer.__class__.__name__ == "LlamaTokenizer":
        tokenizer.pad_token = LLAMA_DEFAULT_PAD_TOKEN

    if tokenizer.__class__.__name__ == "GPTNeoXTokenizerFast":
        tokenizer.add_special_tokens({'pad_token': '[PAD]'})
        os.environ["TOKENIZERS_PARALLELISM"] = "false"

    if cfg.load_in_8bit:
        model = prepare_model_for_int8_training(model)

    lora_config = LoraConfig(
        r=cfg.lora_r,
        lora_alpha=cfg.lora_alpha,
        target_modules=cfg.lora_target_modules,
        lora_dropout=cfg.lora_dropout,
        fan_in_fan_out=cfg.lora_fan_in_fan_out,
        bias="none",
        task_type="CAUSAL_LM",
    )
    model = get_peft_model(model, lora_config)
    if cfg.ddp:
        model.to(f"cuda:{cfg.local_rank}")

    # TODO resume_from_checkpoint handling

    model.print_trainable_parameters()
    return model, tokenizer, lora_config


def train(
    config: Path = Path('configs/pythia_1_2B_alpaca.yml'),
    **kwargs,
):
    # load the config from the yaml file
    with open(config, 'r') as f:
        cfg: AttrDict = AttrDict(yaml.load(f, Loader=yaml.Loader))
    # if there are any options passed in the cli, if it is something that seems valid from the yaml,
    # then overwrite the value
    for k, v in enumerate(kwargs):
        if k in cfg:
            cfg.k = v

    # setup some derived config / hyperparams
    cfg.gradient_accumulation_steps = cfg.batch_size // cfg.micro_batch_size
    cfg.device_map = "auto"
    cfg.world_size = int(os.environ.get("WORLD_SIZE", 1))
    cfg.local_rank = int(os.environ.get("LOCAL_RANK", 0))
    cfg.ddp = cfg.world_size != 1
    if cfg.ddp:
        cfg.device_map = {"": int(os.environ.get("LOCAL_RANK", 0))}
        cfg.gradient_accumulation_steps = cfg.gradient_accumulation_steps // cfg.world_size
    setup_wandb_env_vars(cfg)

    # Load the model and tokenizer
    model, tokenizer, lora_config = load_model(cfg.base_model, cfg.model_type, cfg.tokenizer_type, cfg, adapter=cfg.adapter)
    datasets = []
    for d in cfg.datasets:
        ds: IterableDataset = load_dataset("json", data_files=d.path, streaming=True, split=None)
        if d.type == "alpaca":
            ds_strategy = AlpacaPromptTokenizingStrategy(AlpacaPrompter(), tokenizer, cfg.train_on_inputs, cfg.sequence_len)
            ds_wrapper = TokenizedPromptDataset(ds_strategy, ds["train"])
            datasets.append(ds_wrapper)
        elif d.type == "gpteacher":
            ds_strategy = GPTeacherPromptTokenizingStrategy(GPTeacherPrompter(), tokenizer, cfg.train_on_inputs, cfg.sequence_len)
            ds_wrapper = TokenizedPromptDataset(ds_strategy, ds["train"])
            datasets.append(ds_wrapper)
        elif d.type == "sharegpt":
            ds_strategy = ShareGPTPromptTokenizingStrategy(ShareGPTPrompter(), tokenizer, cfg.train_on_inputs, cfg.sequence_len)
            ds_wrapper = TokenizedPromptDataset(ds_strategy, ds["train"])
            datasets.append(ds_wrapper)
    constant_len_dataset = ConstantLengthDataset(tokenizer, datasets, seq_length=cfg.sequence_len)
    constant_len_dataset = Dataset.from_list([_ for _ in constant_len_dataset]).train_test_split(
        test_size=cfg.val_set_size, shuffle=True, seed=42
    )

    print(constant_len_dataset)
    train_dataset = constant_len_dataset["train"]
    eval_dataset = constant_len_dataset["test"]

    total_num_steps = int(math.ceil(len(train_dataset) * cfg.num_epochs / cfg.batch_size))
    warmup_steps = min(int(0.03 * total_num_steps), 100)
    logging_steps = min(int(0.005 * total_num_steps), 10)
    save_steps = eval_steps = min(int(0.05 * total_num_steps), 200)

    training_args = transformers.TrainingArguments(
        per_device_train_batch_size=cfg.micro_batch_size,
        gradient_accumulation_steps=cfg.gradient_accumulation_steps,
        warmup_steps=warmup_steps,
        num_train_epochs=cfg.num_epochs,
        learning_rate=cfg.learning_rate,
        bf16=cfg.bf16,
        tf32=cfg.tf32,
        logging_steps=logging_steps,
        evaluation_strategy="steps" if cfg.val_set_size > 0 else "no",
        save_strategy="steps",
        eval_steps=eval_steps if cfg.val_set_size > 0 else None,
        save_steps=save_steps,
        output_dir=cfg.output_dir,
        save_total_limit=3,
        load_best_model_at_end=True if cfg.val_set_size > 0 else False,
        ddp_find_unused_parameters=False if cfg.ddp else None,
        group_by_length=cfg.group_by_length,
        report_to="wandb" if cfg.use_wandb else None,
        run_name=cfg.wandb_run_name if cfg.use_wandb else None,
    )

    decay_parameters = get_parameter_names(model, [nn.LayerNorm])
    decay_parameters = [name for name in decay_parameters if "bias" not in name]
    optimizer_grouped_parameters = [
        {
            "params": [p for n, p in model.named_parameters() if n in decay_parameters],
            "weight_decay": training_args.weight_decay,
        },
        {
            "params": [p for n, p in model.named_parameters() if n not in decay_parameters],
            "weight_decay": 0.0,
        },
    ]

    adam_bnb_optim = bnb.optim.Adam8bit(
        optimizer_grouped_parameters,
        betas=(training_args.adam_beta1, training_args.adam_beta2),
        eps=training_args.adam_epsilon,
        lr=training_args.learning_rate,
    )

    lr_scheduler = transformers.get_cosine_schedule_with_warmup(
        adam_bnb_optim,
        training_args.warmup_steps,
        total_num_steps,
    )

    trainer = transformers.Trainer(
        model=model,
        train_dataset=train_dataset,
        eval_dataset=eval_dataset,
        args=training_args,
        optimizers=(adam_bnb_optim, lr_scheduler),
        data_collator=transformers.DataCollatorForSeq2Seq(
            tokenizer, pad_to_multiple_of=8, return_tensors="pt", padding=True
        ),
    )
    model.config.use_cache = False

    old_state_dict = model.state_dict
    model.state_dict = (
        lambda self, *_, **__: get_peft_model_state_dict(
            self, old_state_dict()
        )
    ).__get__(model, type(model))

    if torch.__version__ >= "2" and sys.platform != "win32":
        model = torch.compile(model)

    signal.signal(signal.SIGINT, lambda signal, frame: (
        model.save_pretrained(cfg.output_dir),
        exit(0)
    ))

    # go ahead and presave the adapter config
    lora_config.save_pretrained(cfg.output_dir)
    trainer.train(resume_from_checkpoint=cfg.resume_from_checkpoint)

    model.save_pretrained(cfg.output_dir)

if __name__ == "__main__":
    fire.Fire(train)