File size: 22,470 Bytes
b6ab8aa
 
 
 
 
 
 
 
 
b2edaae
 
 
 
 
 
b6ab8aa
a045db0
 
 
b6ab8aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a045db0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6ab8aa
 
 
 
 
 
 
 
 
 
 
62ca4a2
a045db0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6ab8aa
 
 
 
a045db0
b6ab8aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a045db0
62ca4a2
a045db0
 
 
 
 
 
 
 
b6ab8aa
a045db0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6ab8aa
 
 
 
 
 
 
b2edaae
 
 
 
 
 
 
 
 
db8a8af
 
b6ab8aa
 
 
 
 
 
 
 
 
a045db0
 
 
db8a8af
a045db0
 
 
b6ab8aa
 
b2edaae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db8a8af
b2edaae
 
a045db0
b2edaae
 
b6ab8aa
b2edaae
 
 
 
 
 
 
db8a8af
b2edaae
a045db0
b6ab8aa
b2edaae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db8a8af
b2edaae
 
a045db0
b6ab8aa
b2edaae
b6ab8aa
b2edaae
 
 
 
 
 
 
b6ab8aa
 
 
 
 
 
 
 
 
b2edaae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6ab8aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
"""Flash attention monkey patch for mistral model"""
# pylint: disable=duplicate-code

import logging
from typing import List, Optional, Tuple, Union

import torch
import transformers
from einops import rearrange
from flash_attn.bert_padding import pad_input, unpad_input
from flash_attn.flash_attn_interface import (  # pylint: disable=ungrouped-imports
    flash_attn_kvpacked_func,
    flash_attn_varlen_kvpacked_func,
    flash_attn_varlen_qkvpacked_func,
)
from transformers.modeling_outputs import BaseModelOutputWithPast
from transformers.models.mistral.modeling_mistral import (
    MistralAttention as OriginalMistralAttention,
)
from transformers.models.mistral.modeling_mistral import (
    MistralDecoderLayer as OriginalMistralDecoderLayer,
)
from transformers.models.mistral.modeling_mistral import apply_rotary_pos_emb, repeat_kv

from axolotl.monkeypatch.utils import get_cu_seqlens_from_pos_ids

LOG = logging.getLogger("axolotl.monkeypatch.mistral")


def replace_mistral_attn_with_flash_attn(
    packed: Optional[bool] = False,
):
    transformers.models.mistral.modeling_mistral.MistralModel._prepare_decoder_attention_mask = (  # pylint: disable=protected-access
        _prepare_decoder_attention_mask
    )
    transformers.models.mistral.modeling_mistral.MistralAttention.forward = (
        flashattn_forward
    )
    if packed:
        transformers.models.mistral.modeling_mistral.MistralDecoderLayer = (
            MistralDecoderLayer
        )
        transformers.models.mistral.modeling_mistral.MistralModel.forward = (
            mistral_model_forward
        )


@torch.jit.script
def _make_sliding_window_causal_mask(
    bsz: int,
    tgt_len: int,
    dtype: torch.dtype,
    device: torch.device,
    past_key_values_length: int = 0,
    sliding_window: int = 4096,
):
    """
    Make causal mask used for sliding window attention
    """
    tensor = torch.full(
        (tgt_len, tgt_len),
        fill_value=1,
        device=device,
    )
    mask = torch.tril(tensor, diagonal=0)
    # make the mask banded to account for sliding window
    # NOTE: HF implementation is wrong as of 14-10-2023 for torch.triu, needs +1
    mask = torch.triu(mask, diagonal=-sliding_window + 1)
    mask = torch.log(mask).to(dtype)

    if past_key_values_length > 0:
        mask = torch.cat(
            [
                torch.zeros(
                    tgt_len, past_key_values_length, dtype=dtype, device=device
                ),
                mask,
            ],
            dim=-1,
        )
    return mask[None, None, :, :].expand(
        bsz, 1, tgt_len, tgt_len + past_key_values_length
    )


# Disable the transformation of the attention mask in LlamaModel as the flash attention
# requires the attention mask to be the same as the key_padding_mask
def _prepare_decoder_attention_mask(
    self,
    attention_mask,
    input_shape,
    inputs_embeds,
    past_key_values_length,
    sliding_window,
):  # pylint: disable=unused-argument
    # [bsz, seq_len]
    if attention_mask is None or sliding_window is None:
        return attention_mask

    # NOTE: attention mask and sliding masks are only broadcastable in certain scenarios.
    # Without attention_mask.shape[0] == 1, error will trigger after eval loss but only when wandb is enabled.
    if input_shape[-1] > 1 and attention_mask.shape[0] == 1:
        sliding_window_mask = _make_sliding_window_causal_mask(
            bsz=input_shape[0],
            tgt_len=input_shape[1],
            dtype=inputs_embeds.dtype,
            device=inputs_embeds.device,
            past_key_values_length=past_key_values_length,
            sliding_window=sliding_window,
        )
        attention_mask = attention_mask + sliding_window_mask
    else:
        LOG.info("skipping sliding window mask, not broadcastable with attention mask")

    return attention_mask


def flashattn_forward(
    self: OriginalMistralAttention,
    hidden_states: torch.Tensor,
    attention_mask: Optional[torch.Tensor] = None,
    position_ids: Optional[torch.LongTensor] = None,
    past_key_value: Optional[Tuple[torch.Tensor]] = None,
    output_attentions: bool = False,
    use_cache: bool = False,
    cu_seqlens: Optional[torch.Tensor] = None,
    max_seqlen: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
    bsz, q_len, _ = hidden_states.size()

    query_states = self.q_proj(hidden_states)
    key_states = self.k_proj(hidden_states)
    value_states = self.v_proj(hidden_states)

    query_states = query_states.view(
        bsz, q_len, self.num_heads, self.head_dim
    ).transpose(1, 2)
    key_states = key_states.view(
        bsz, q_len, self.num_key_value_heads, self.head_dim
    ).transpose(1, 2)
    value_states = value_states.view(
        bsz, q_len, self.num_key_value_heads, self.head_dim
    ).transpose(1, 2)

    kv_seq_len = key_states.shape[-2]
    if past_key_value is not None:
        kv_seq_len += past_key_value[0].shape[-2]
    cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
    query_states, key_states = apply_rotary_pos_emb(
        query_states, key_states, cos, sin, position_ids
    )

    use_sliding_windows = (
        getattr(self.config, "sliding_window") is not None
        and kv_seq_len > self.config.sliding_window
    )

    if use_sliding_windows:
        window_size = (self.config.sliding_window, self.config.sliding_window)
    else:
        window_size = (-1, -1)

    if past_key_value is not None:
        # Activate slicing cache only if the config has a value `sliding_windows` attribute
        if (
            hasattr(self.config, "sliding_window")
            and kv_seq_len > self.config.sliding_window
        ):
            slicing_tokens = kv_seq_len - self.config.sliding_window

            past_key = past_key_value[0]
            past_value = past_key_value[1]

            past_key = past_key[:, :, slicing_tokens:, :].contiguous()
            past_value = past_value[:, :, slicing_tokens:, :].contiguous()

            if past_key.shape[-2] != self.config.sliding_window - 1:
                raise ValueError(
                    f"past key much have a shape of (`batch_size, num_heads, self.config.sliding_window-1, head_dim`), got"
                    f" {past_key.shape}"
                )

            past_key_value = (past_key, past_value) if use_cache else None

        if past_key_value is not None:
            key_states = torch.cat([past_key_value[0], key_states], dim=2)
            value_states = torch.cat([past_key_value[1], value_states], dim=2)

    past_key_value = (key_states, value_states) if use_cache else None

    # repeat k/v heads if n_kv_heads < n_heads
    key_states = repeat_kv(key_states, self.num_key_value_groups)
    value_states = repeat_kv(value_states, self.num_key_value_groups)

    if self.training:
        # during training q,k,v always have same seqlen
        assert key_states.shape == query_states.shape
        is_causal = True
    else:
        # turn off FA causal mask after first inference autoregressive iteration
        # only on first autoregressive step q,k,v have same seqlen
        is_causal = key_states.shape == query_states.shape

    dropout_rate = 0.0 if not self.training else getattr(self, "attention_dropout", 0.0)

    if cu_seqlens is not None and max_seqlen is not None and cu_seqlens.dim() == 1:
        # special handling using sample packing
        qkv = torch.stack(
            [query_states, key_states, value_states], dim=2
        )  # [bsz, nh, 3, q_len, hd]
        qkv = qkv.transpose(1, 3)  # [bsz, q_len, 3, nh, hd]
        qkv = rearrange(qkv, "b s ... -> (b s) ...")

        output = flash_attn_varlen_qkvpacked_func(
            qkv,
            cu_seqlens,
            max_seqlen,
            dropout_p=dropout_rate,
            softmax_scale=None,
            causal=True,
            window_size=window_size,
        )
        output = rearrange(output, "(b s) ... -> b s ...", b=bsz)
    elif query_states.shape == key_states.shape:
        query_states = query_states.transpose(1, 2)
        key_states = key_states.transpose(1, 2)
        value_states = value_states.transpose(1, 2)
        qkv_unpad, cu_seqlens_q, max_seqlen_q, _, output_pad_fn = generate_qkv(
            query_states,
            key_states,
            value_states,
            qkvpacked=True,
            # We have disabled _prepare_decoder_attention_mask in LlamaModel
            # the attention_mask should be the same as the key_padding_mask
            key_padding_mask=attention_mask,
            query_padding_mask=attention_mask[:, -query_states.size(1) :]
            if attention_mask is not None
            else None,
        )
        output_unpad = flash_attn_varlen_qkvpacked_func(
            qkv_unpad,
            cu_seqlens_q,
            max_seqlen_q,
            dropout_p=dropout_rate,
            softmax_scale=None,
            causal=is_causal,
            window_size=window_size,
        )
        output = output_pad_fn(output_unpad)
    else:
        query_states = query_states.transpose(1, 2)
        key_states = key_states.transpose(1, 2)
        value_states = value_states.transpose(1, 2)
        if attention_mask is None or attention_mask.all().item():
            output = flash_attn_kvpacked_func(
                query_states,
                torch.stack([key_states, value_states], 2),
                dropout_p=dropout_rate,
                causal=is_causal,
                window_size=window_size,
            )
        else:
            (  # pylint: disable=unbalanced-tuple-unpacking
                q_unpad,
                kv_unpad,
                cu_seqlens_q,
                cu_seqlens_k,
                max_seqlen_q,
                max_seqlen_k,
                _,
                _,
                output_pad_fn,
            ) = generate_qkv(
                query_states,
                key_states,
                value_states,
                kvpacked=True,
                key_padding_mask=attention_mask,
                query_padding_mask=attention_mask[:, -query_states.size(1) :]
                if attention_mask is not None
                else None,
            )
            if q_unpad.dtype != kv_unpad.dtype:
                kv_unpad = kv_unpad.to(q_unpad.dtype)
            output_unpad = flash_attn_varlen_kvpacked_func(
                q_unpad,
                kv_unpad,
                cu_seqlens_q,
                cu_seqlens_k,
                max_seqlen_q,
                max_seqlen_k,
                dropout_p=dropout_rate,
                softmax_scale=None,
                causal=is_causal,
                window_size=window_size,
            )
            output = output_pad_fn(output_unpad)

    attn_output = output
    if attn_output.size() != (bsz, q_len, self.num_heads, self.head_dim):
        raise ValueError(
            f"`attn_output` should be of size {(bsz, q_len, self.num_heads, self.head_dim)}, but is"
            f" {attn_output.size()}"
        )
    attn_output = rearrange(attn_output, "b s h d -> b s (h d)")

    attn_output = self.o_proj(attn_output)

    if not output_attentions:
        attn_weights = None

    return attn_output, attn_weights, past_key_value


# based on https://github.com/Dao-AILab/flash-attention/blob/364a5b/tests/test_flash_attn.py#L38
def generate_qkv(
    q,
    k,
    v,
    query_padding_mask=None,
    key_padding_mask=None,
    kvpacked=False,
    qkvpacked=False,
):  # pylint: disable=invalid-name,unnecessary-lambda-assignment
    """
    Arguments:
        q: (batch_size, seqlen_q, nheads, d)
        k: (batch_size, seqlen_k, nheads_k, d)
        v: (batch_size, seqlen_k, nheads_k, d)
        query_padding_mask: (batch_size, seqlen), bool
        key_padding_mask: (batch_size, seqlen), bool
    """
    assert not (kvpacked and qkvpacked)
    batch_size, seqlen_q, nheads, d = q.shape
    _, seqlen_k, nheads_k, _ = k.shape
    assert k.shape == (batch_size, seqlen_k, nheads_k, d)
    assert v.shape == (batch_size, seqlen_k, nheads_k, d)

    if query_padding_mask is not None:
        q_unpad, indices_q, cu_seqlens_q, max_seqlen_q = unpad_input(
            q, query_padding_mask
        )

        output_pad_fn = lambda output_unpad: pad_input(  # noqa: E731
            output_unpad, indices_q, batch_size, seqlen_q
        )

    else:
        q_unpad = rearrange(q, "b s h d -> (b s) h d")
        cu_seqlens_q = torch.arange(
            0,
            (batch_size + 1) * seqlen_q,
            step=seqlen_q,
            dtype=torch.int32,
            device=q_unpad.device,
        )
        max_seqlen_q = seqlen_q

        output_pad_fn = lambda output_unpad: rearrange(  # noqa: E731
            output_unpad, "(b s) h d -> b s h d", b=batch_size
        )

    if key_padding_mask is not None:
        k_unpad, _, cu_seqlens_k, max_seqlen_k = unpad_input(k, key_padding_mask)
        v_unpad, _, _, _ = unpad_input(v, key_padding_mask)
    else:
        k_unpad = rearrange(k, "b s h d -> (b s) h d")
        v_unpad = rearrange(v, "b s h d -> (b s) h d")
        cu_seqlens_k = torch.arange(
            0,
            (batch_size + 1) * seqlen_k,
            step=seqlen_k,
            dtype=torch.int32,
            device=k_unpad.device,
        )
        max_seqlen_k = seqlen_k

    if qkvpacked:
        assert nheads == nheads_k
        qkv_unpad = torch.stack([q_unpad, k_unpad, v_unpad], dim=1)
        qkv = torch.stack([q, k, v], dim=2)
        return (qkv_unpad, cu_seqlens_q, max_seqlen_q, qkv, output_pad_fn)

    if kvpacked:
        kv_unpad = torch.stack([k_unpad, v_unpad], dim=1)
        kv = torch.stack([k, v], dim=2)
        return (
            q_unpad,
            kv_unpad,
            cu_seqlens_q,
            cu_seqlens_k,
            max_seqlen_q,
            max_seqlen_k,
            q,
            kv,
            output_pad_fn,
        )

    return (
        q_unpad,
        k_unpad,
        v_unpad,
        cu_seqlens_q,
        cu_seqlens_k,
        max_seqlen_q,
        max_seqlen_k,
        q,
        k,
        v,
        output_pad_fn,
    )


def mistral_model_forward(
    self,
    input_ids: torch.LongTensor = None,
    attention_mask: Optional[torch.Tensor] = None,
    position_ids: Optional[torch.LongTensor] = None,
    past_key_values: Optional[List[torch.FloatTensor]] = None,
    inputs_embeds: Optional[torch.FloatTensor] = None,
    use_cache: Optional[bool] = None,
    output_attentions: Optional[bool] = None,
    output_hidden_states: Optional[bool] = None,
    return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPast]:
    output_attentions = (
        output_attentions
        if output_attentions is not None
        else self.config.output_attentions
    )
    output_hidden_states = (
        output_hidden_states
        if output_hidden_states is not None
        else self.config.output_hidden_states
    )
    use_cache = use_cache if use_cache is not None else self.config.use_cache

    return_dict = (
        return_dict if return_dict is not None else self.config.use_return_dict
    )

    # retrieve input_ids and inputs_embeds
    if input_ids is not None and inputs_embeds is not None:
        raise ValueError(
            "You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time"
        )
    if input_ids is not None:
        batch_size, seq_length = input_ids.shape
    elif inputs_embeds is not None:
        batch_size, seq_length, _ = inputs_embeds.shape
    else:
        raise ValueError(
            "You have to specify either decoder_input_ids or decoder_inputs_embeds"
        )

    seq_length_with_past = seq_length
    past_key_values_length = 0

    if past_key_values is not None:
        past_key_values_length = past_key_values[0][0].shape[2]
        seq_length_with_past = seq_length_with_past + past_key_values_length

    cu_seqlens = None
    max_seqlen = None
    if position_ids is None:
        device = input_ids.device if input_ids is not None else inputs_embeds.device
        position_ids = torch.arange(
            past_key_values_length,
            seq_length + past_key_values_length,
            dtype=torch.long,
            device=device,
        )
        position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
    else:
        position_ids = position_ids.view(-1, seq_length).long()
        cu_seqlens, max_seqlen = get_cu_seqlens_from_pos_ids(position_ids)
        cu_seqlens = cu_seqlens.squeeze()

    if inputs_embeds is None:
        inputs_embeds = self.embed_tokens(input_ids)
    # embed positions
    if attention_mask is None:
        attention_mask = torch.ones(
            (batch_size, seq_length_with_past),
            dtype=torch.bool,
            device=inputs_embeds.device,
        )
    attention_mask = (
        self._prepare_decoder_attention_mask(  # pylint: disable=protected-access
            attention_mask,
            (batch_size, seq_length),
            inputs_embeds,
            past_key_values_length,
            sliding_window=self.config.sliding_window,
        )
    )

    hidden_states = inputs_embeds

    if self.gradient_checkpointing and self.training:
        if use_cache:
            transformers.logger.warning_once(
                "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
            )
            use_cache = False

    # decoder layers
    all_hidden_states = () if output_hidden_states else None
    all_self_attns = () if output_attentions else None
    next_decoder_cache = () if use_cache else None

    for idx, decoder_layer in enumerate(self.layers):
        if output_hidden_states:
            all_hidden_states += (hidden_states,)

        past_key_value = past_key_values[idx] if past_key_values is not None else None

        if self.gradient_checkpointing and self.training:

            def create_custom_forward(module):
                def custom_forward(*inputs):
                    # None for past_key_value
                    return module(*inputs)

                return custom_forward

            layer_outputs = torch.utils.checkpoint.checkpoint(
                create_custom_forward(decoder_layer),
                hidden_states,
                attention_mask,
                position_ids,
                past_key_value,
                output_attentions,
                None,
                cu_seqlens,
                max_seqlen,
            )
        else:
            layer_outputs = decoder_layer(
                hidden_states,
                attention_mask=attention_mask,
                position_ids=position_ids,
                past_key_value=past_key_value,
                output_attentions=output_attentions,
                use_cache=use_cache,
                cu_seqlens=cu_seqlens,
                max_seqlen=max_seqlen,
            )

        hidden_states = layer_outputs[0]

        if use_cache:
            next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)

        if output_attentions:
            all_self_attns += (layer_outputs[1],)

    hidden_states = self.norm(hidden_states)

    # add hidden states from the last decoder layer
    if output_hidden_states:
        all_hidden_states += (hidden_states,)

    next_cache = next_decoder_cache if use_cache else None
    if not return_dict:
        return tuple(
            v
            for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
            if v is not None
        )
    return BaseModelOutputWithPast(
        last_hidden_state=hidden_states,
        past_key_values=next_cache,
        hidden_states=all_hidden_states,
        attentions=all_self_attns,
    )


class MistralDecoderLayer(OriginalMistralDecoderLayer):
    """
    patched version of MistralDecoderLayer to pass through the precalculated cu_seqlens
    """

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_value: Optional[Tuple[torch.Tensor]] = None,
        output_attentions: Optional[bool] = False,
        use_cache: Optional[bool] = False,
        cu_seqlens: Optional[torch.Tensor] = None,
        max_seqlen: Optional[torch.Tensor] = None,
    ) -> Tuple[
        torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]
    ]:
        """
        Args:
            hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
            attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
                `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more detail.
            use_cache (`bool`, *optional*):
                If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
                (see `past_key_values`).
            past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
            cu_seqlens (`torch.Tensor`, *optional*) cumulative sequence len when packing
        """

        residual = hidden_states

        hidden_states = self.input_layernorm(hidden_states)

        # Self Attention
        hidden_states, self_attn_weights, present_key_value = self.self_attn(
            hidden_states=hidden_states,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_value=past_key_value,
            output_attentions=output_attentions,
            use_cache=use_cache,
            cu_seqlens=cu_seqlens,
            max_seqlen=max_seqlen,
        )
        hidden_states = residual + hidden_states

        # Fully Connected
        residual = hidden_states
        hidden_states = self.post_attention_layernorm(hidden_states)
        hidden_states = self.mlp(hidden_states)
        hidden_states = residual + hidden_states

        outputs = (hidden_states,)

        if output_attentions:
            outputs += (self_attn_weights,)

        if use_cache:
            outputs += (present_key_value,)

        return outputs