File size: 7,203 Bytes
ed70a08 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 |
# Template-free prompt construction with the `input_output` format
<!-- TOC -->
- [Background](#background)
- [Masking Inputs](#masking-inputs)
- [You may not want prompt templates](#you-may-not-want-prompt-templates)
- [The `input_output` format](#the-input_output-format)
- [Usage](#usage)
- [1. Prepare Data](#1-prepare-data)
- [2. Use `type: input_output`](#2-use-type-input_output)
- [3. Check the prompts](#3-check-the-prompts)
<!-- /TOC -->
<a id="markdown-background" name="background"></a>
## Background
<a id="markdown-masking-inputs" name="masking-inputs"></a>
### Masking Inputs
One of the most popular features of
[axolotl](https://github.com/OpenAccess-AI-Collective/axolotl) is
setting the following configuration value:
```yaml
train_on_inputs: false
```
If you declare a [dataset formats](https://github.com/OpenAccess-AI-Collective/axolotl?tab=readme-ov-file#dataset)
such as `alpaca` or `chatml`, axolotl knows what is an input
(i.e. human) vs. an output (i.e. the assistant) and masks the input
labels so that your model can focus on predicting the outputs only.
<a id="markdown-you-may-not-want-prompt-templates" name="you-may-not-want-prompt-templates"></a>
### You may not want prompt templates
However, there are many situations where you don't want to use one of
these formats or templates (I usually don't!). This is because they can:
- Add unnecessary boilerplate to your prompts.
- Create artifacts like special delimiters `<|im_start|>` that can
quickly become footguns if you don't include them correctly at
inference time.
- Enforce a *chat* interface when you do not want one. Sometimes you
just want to fine-tune a model to a very specific task and do NOT
want multi-turn conversations, roles, etc.
- Limit you to only certain roles that the template allows.
<a id="markdown-the-inputoutput-format" name="the-inputoutput-format"></a>
### The `input_output` format
You can construct your prompts without a template by using the
`input_output` format, by setting `type: input_output` in your
configuration file like this:
**config.yml**
```yaml
train_on_inputs: false # Mask segments of your data
datasets:
- path: output.jsonl
type: input_output # use template free prompt construction
```
Unlike `type: completion`, which is also template-free,
`type: input_output` allows you to mask segments of your text. More
details on how this works are described below.
<a id="markdown-usage" name="usage"></a>
## Usage
This is how you can use the `input_output` format:
<a id="markdown-1-prepare-data" name="1-prepare-data"></a>
### 1. Prepare Data
To use the `input_output` format, collect your data in the following
format into a jsonl file (below is the first row from the file
`output`.jsonl` pretty printed):
```bash
$ head -n1 output.jsonl | python -m json.tool
{.cell-output .cell-output-stdout}
{
"segments": [
{
"label": true,
"text": "<s>Hello\n"
},
{
"label": true,
"text": "hi there!. "
},
{
"label": false,
"text": "goodbye "
},
{
"label": true,
"text": "farewell</s>"
}
]
}
```
Set `label:false` when you want to mask a segment of text so that the
model isn't trained on it. Some things to keep in mind:
> [!IMPORTANT]
> 1. **EOS, BOS, spaces, newlines etc. are entirely up to you. Axolotl
concatenates all the segments as-is.** The tokenizer doesn't add
anything additional. Notice how I added spaces, newlines, `<s>`
(BOS), and `</s>` (EOS) myself.
> 2. Make sure you check the materialized output to validate that the
prompt is getting assembled how you like.
<a id="markdown-2-use-type-inputoutput" name="2-use-type-inputoutput"></a>
### 2. Use `type: input_output`
Let's materialize data with our `output.jsonl` file by setting
`type: input_output` in our axolotl config:
```yaml
# training_config.yaml
base_model: mistralai/Mistral-7B-v0.1
data_seed: 49
seed: 49
datasets:
- path: output.jsonl
type: input_output
val_set_size: 0.1
sequence_len: 896
sample_packing: false
micro_batch_size: 2
gradient_accumulation_steps: 3
eval_batch_size: 2
num_epochs: 1
learning_rate: 0.0002
train_on_inputs: false
special_tokens:
bos_token: "<s>"
eos_token: "</s>"
unk_token: "<unk>"
```
You can use the following command to materialize your data. The
`--debug` flag will print the tokens, along with the labels so you can
verify that the correct items are being ignored:
```bash
$ python -m axolotl.cli.preprocess training_config.yaml --debug
...
[2024-03-05 23:36:46,969] [INFO] [axolotl.check_example_labels:35] [PID:607731] [RANK:0] <s>(1, 1) Hello(22557, 22557)
(13, 13) hi(12014, 12014) there(736, 736) !(28808, 28808) .(28723, 28723) (28705, 28705) good(-100, 1179) bye(-100, 17664) (-100, 28705) fare(19111, 19111) well(5458, 5458) </s>(2, 2)
```
The format is `decoded_token`(`label`, `token_id`), for example,
`<s>(1, 1)` means that the token is `<s>`, the label is `1` and the
token_id is `1`. When the label is `-100` then that token is ignored for
training.
<a id="markdown-3-check-the-prompts" name="3-check-the-prompts"></a>
### 3. Check the prompts
Here is another way to check the materialized output:
```python
from transformers import AutoTokenizer
from datasets import load_from_disk
import yaml
directory = !ls last_run_prepared/
with open('training_config.yaml', 'r') as f:
cfg = yaml.safe_load(f)
model_id = cfg['base_model']
tok = AutoTokenizer.from_pretrained(model_id)
ds = load_from_disk(f'last_run_prepared/{directory[0]}/')
```
```python
>>> row = ds[0]
>>> print(tok.decode(row['input_ids']))
<s> Hello
hi there!. goodbye farewell</s>
```
We can check that the right tokens are ingored by comparing the labels
to each token:
```python
import pandas as pd
pd.DataFrame([{'token': tok.decode(i), 'label': l, 'id':i} for i,l in
zip(row['input_ids'], row['labels'])])
```
| token | label | id |
|-------|-------|-------|
| 0 | \<s\> | 1 |
| 1 | Hello | 22557 |
| 2 | \\n | 13 |
| 3 | hi | 12014 |
| 4 | there | 736 |
| 5 | ! | 28808 |
| 6 | . | 28723 |
| 7 | | 28705 |
| 8 | good | -100 |
| 9 | bye | -100 |
| 10 | | -100 |
| 11 | fare | 19111 |
| 12 | well | 5458 |
| 13 | \</s\>| 2 |
If we look at the input data, the above table seems correct! (The jsonl
version is repeated below for reference):
```bash
$ head -n1 output.jsonl | python -m json.tool
{.cell-output .cell-output-stdout}
{
"segments": [
{
"label": true,
"text": "<s>Hello\n"
},
{
"label": true,
"text": "hi there!. "
},
{
"label": false,
"text": "goodbye "
},
{
"label": true,
"text": "farewell</s>"
}
]
}
```
|