File size: 7,116 Bytes
ce24f5e
 
 
 
 
 
 
 
 
 
 
8d959a7
 
 
 
ce24f5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87d7825
 
 
 
ce24f5e
87d7825
 
ce24f5e
 
8d959a7
87d7825
 
ce24f5e
 
 
 
a6028d3
 
 
ce24f5e
 
 
87d7825
8d959a7
87d7825
 
 
ce24f5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87d7825
 
 
ce24f5e
87d7825
 
 
 
 
a12fb0a
 
 
 
 
 
 
 
 
87d7825
 
 
 
 
 
 
 
 
 
 
 
 
 
ce24f5e
 
 
 
6045345
 
 
 
 
 
 
 
 
cf68153
2bc1a5b
 
cf68153
 
174b74d
 
cf68153
 
 
 
174b74d
2bc1a5b
cf68153
 
81de0ef
 
 
 
 
2bc1a5b
 
 
 
 
 
 
 
 
 
81de0ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6045345
ce24f5e
 
8d959a7
 
f2a2029
8d959a7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import abc

from transformers import PreTrainedTokenizer

IGNORE_INDEX = -100
LLAMA_DEFAULT_PAD_TOKEN = "[PAD]"
LLAMA_DEFAULT_EOS_TOKEN = "</s>"
LLAMA_DEFAULT_BOS_TOKEN = "<s>"
LLAMA_DEFAULT_UNK_TOKEN = "<unk>"


class InvalidDataException(Exception):
    pass


class PromptTokenizingStrategy(abc.ABC):
    def __init__(
        self,
        prompter,
        tokenizer,
        train_on_inputs: bool = False,
        sequence_len: int = 2048,
    ):
        self.prompter = prompter
        self.tokenizer: PreTrainedTokenizer = tokenizer
        self.train_on_inputs = train_on_inputs
        self.sequence_len = sequence_len

    @abc.abstractmethod
    def tokenize_prompt(self, prompt):
        pass


class InstructionPromptTokenizingStrategy(PromptTokenizingStrategy):
    def parse_instruction_fields(self, prompt) -> (str, str, str):
        raise NotImplementedError

    def tokenize_prompt(self, prompt):
        instruction, input, response = self.parse_instruction_fields(prompt)
        full_prompt = self._build_full_prompt(instruction, input, response)
        tokenized_full_prompt = self._tokenize(full_prompt)
        if not self.train_on_inputs:
            user_prompt = self.prompter.build_prompt(
                instruction,
                input,
            )
            tokenized_user_prompt = self._tokenize(user_prompt, add_eos_token=False)
            user_prompt_len = len(tokenized_user_prompt["input_ids"])
            # TODO this could be sped up using numpy array slicing
            tokenized_full_prompt["labels"] = [
                -100
            ] * user_prompt_len + tokenized_full_prompt["labels"][user_prompt_len:]

        return tokenized_full_prompt

    def _build_full_prompt(self, instruction, input, response):
        return self.prompter.build_prompt(
            instruction,
            input,
            response,
        )

    def _tokenize(self, prompt, add_eos_token=True):
        result = self.tokenizer(
            prompt,
            truncation=True,
            max_length=self.sequence_len,
            padding=False,
            return_tensors=None,
        )
        if (
            result["input_ids"][-1] != self.tokenizer.eos_token_id
            and len(result["input_ids"]) < self.sequence_len
            and add_eos_token
        ):
            result["input_ids"].append(self.tokenizer.eos_token_id)
            result["attention_mask"].append(1)

        result["labels"] = result["input_ids"].copy()
        return result


class AlpacaPromptTokenizingStrategy(InstructionPromptTokenizingStrategy):
    def parse_instruction_fields(self, prompt) -> (str, str, str):
        return (
            prompt["instruction"],
            prompt["input"] if "input" in prompt else "",
            prompt["output"],
        )


class JeopardyPromptTokenizingStrategy(InstructionPromptTokenizingStrategy):
    def parse_instruction_fields(self, prompt) -> (str, str, str):
        return (
            prompt["question"],
            prompt["category"],
            "what is " + prompt["answer"],
        )


class OpenAssistantPromptTokenizingStrategy(InstructionPromptTokenizingStrategy):
    def parse_instruction_fields(self, prompt) -> (str, str, str):
        return (
            prompt["INSTRUCTION"],
            "",
            prompt["RESPONSE"],
        )


class GPTeacherPromptTokenizingStrategy(InstructionPromptTokenizingStrategy):
    def parse_instruction_fields(self, prompt) -> (str, str, str):
        return (
            prompt["instruction"],
            prompt["input"] if "input" in prompt else "",
            prompt["response"],
        )


class NomicGPT4AllPromptTokenizingStrategy(InstructionPromptTokenizingStrategy):
    def parse_instruction_fields(self, prompt) -> (str, str, str):
        return (
            prompt["prompt"],
            "",
            prompt["response"],
        )


class CompletionPromptTokenizingStrategy(InstructionPromptTokenizingStrategy):
    def parse_instruction_fields(self, prompt) -> str:
        return prompt["text"]

    def tokenize_prompt(self, prompt):
        instruction = self.parse_instruction_fields(prompt)
        full_prompt = self._build_full_prompt(instruction)
        tokenized_full_prompt = self._tokenize(full_prompt)

        return tokenized_full_prompt

    def _build_full_prompt(self, instruction):
        return self.prompter.build_prompt(instruction)


class ReflectionPromptTokenizingStrategy(PromptTokenizingStrategy):
    def parse_instruction_fields(self, prompt) -> (str, str, str, str, str):
        raise NotImplementedError

    def tokenize_prompt(self, prompt):
        (
            instruction,
            input,
            output,
            reflection,
            corrected,
        ) = self.parse_instruction_fields(prompt)
        full_prompt = self._build_full_prompt(
            instruction, input, output, reflection, corrected
        )
        tokenized_full_prompt = self._tokenize(full_prompt)
        if not self.train_on_inputs:
            user_prompt = self.prompter.build_prompt(
                instruction,
                input,
            )
            tokenized_user_prompt = self._tokenize(user_prompt, add_eos_token=False)
            user_prompt_len = len(tokenized_user_prompt["input_ids"])
            # TODO this could be sped up using numpy array slicing
            tokenized_full_prompt["labels"] = [
                -100
            ] * user_prompt_len + tokenized_full_prompt["labels"][user_prompt_len:]

        return tokenized_full_prompt

    def _build_full_prompt(self, instruction, input, output, reflection, corrected):
        return self.prompter.build_prompt(
            instruction,
            input,
            output,
            reflection,
            corrected,
        )

    def _tokenize(self, prompt, add_eos_token=True):
        result = self.tokenizer(
            prompt,
            truncation=True,
            max_length=self.sequence_len,
            padding=False,
            return_tensors=None,
        )
        if (
            result["input_ids"][-1] != self.tokenizer.eos_token_id
            and len(result["input_ids"]) < self.sequence_len
            and add_eos_token
        ):
            result["input_ids"].append(self.tokenizer.eos_token_id)
            result["attention_mask"].append(1)

        result["labels"] = result["input_ids"].copy()
        return result


class AlpacaReflectionPTStrategy(ReflectionPromptTokenizingStrategy):
    def parse_instruction_fields(self, prompt) -> (str, str, str, str, str):
        return (
            prompt["instruction"],
            prompt["input"] if "input" in prompt else "",
            prompt["output"],
            prompt["reflection"],
            prompt["corrected"],
        )


class ShareGPTPromptTokenizingStrategy(PromptTokenizingStrategy):
    def tokenize_prompt(self, prompt):
        try:
            return self.prompter.build_prompt(prompt["conversations"], self.tokenizer)
        except (KeyError, AssertionError, IndexError) as e:
            raise InvalidDataException(str(e))