File size: 14,839 Bytes
861ceca 9bca7db 861ceca f243c21 861ceca 9bca7db 861ceca 738a057 861ceca 9bca7db 861ceca 9bca7db 861ceca 85b0be2 738a057 cc3cebf 861ceca 0ce1a65 7523d1f 861ceca 090c24d 861ceca 71b7ea3 861ceca 614cff4 861ceca 9bca7db 861ceca e50a64e 861ceca bdfefaf fb7f9b9 02f2c72 861ceca 62a7741 861ceca bdfefaf 861ceca 3678a6c 861ceca 738a057 0f985e1 738a057 3678a6c 738a057 861ceca 9bca7db 861ceca 9bca7db 861ceca cc3cebf 7de912e cc3cebf 71b7ea3 861ceca 0ce1a65 861ceca 090c24d 861ceca e50ab07 861ceca e50ab07 861ceca f243c21 7523d1f f243c21 861ceca 85b0be2 71141de 85b0be2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 |
"""Prepare and train a model on a dataset. Can also infer from a model or merge lora"""
import importlib
import json
import logging
import math
import os
import random
import sys
import tempfile
from pathlib import Path
from threading import Thread
from typing import Any, Dict, List, Optional, Union
from urllib.parse import urlparse
import requests
import torch
import yaml
# add src to the pythonpath so we don't need to pip install this
from accelerate.commands.config import config_args
from art import text2art
from huggingface_hub import HfApi
from huggingface_hub.utils import LocalTokenNotFoundError
from transformers import GenerationConfig, TextIteratorStreamer, TextStreamer
from transformers.utils import is_torch_bf16_gpu_available
from axolotl.common.cli import TrainerCliArgs, load_model_and_tokenizer
from axolotl.logging_config import configure_logging
from axolotl.train import TrainDatasetMeta
from axolotl.utils.config import (
normalize_cfg_datasets,
normalize_config,
validate_config,
)
from axolotl.utils.data import load_prepare_dpo_datasets, prepare_dataset
from axolotl.utils.dict import DictDefault
from axolotl.utils.distributed import is_main_process
from axolotl.utils.mlflow_ import setup_mlflow_env_vars
from axolotl.utils.models import load_tokenizer
from axolotl.utils.tokenization import check_dataset_labels
from axolotl.utils.trainer import prepare_optim_env
from axolotl.utils.wandb_ import setup_wandb_env_vars
project_root = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
src_dir = os.path.join(project_root, "src")
sys.path.insert(0, src_dir)
configure_logging()
LOG = logging.getLogger("axolotl.scripts")
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
def print_axolotl_text_art(suffix=None):
font = "nancyj"
ascii_text = " axolotl"
if suffix:
ascii_text += f" x {suffix}"
ascii_art = text2art(ascii_text, font=font)
if is_main_process():
print(ascii_art)
def check_remote_config(config: Union[str, Path]):
# Check if the config is a valid HTTPS URL to a .yml or .yaml file
if not (isinstance(config, str) and config.startswith("https://")):
return config # Return the original value if it's not a valid URL
filename = os.path.basename(urlparse(config).path)
temp_dir = tempfile.mkdtemp()
try:
response = requests.get(config, timeout=30)
response.raise_for_status() # Check for HTTP errors
content = response.content
try:
# Try parsing as JSON first to catch cases where JSON content is mistakenly considered YAML
json.loads(content)
# Log a warning but do not raise an error; JSON is technically valid YAML - this can happen when you forget to point to a raw github link
LOG.warning(
f"Warning: The content of the file at {config} is JSON, which is technically valid YAML but might not be intended."
)
except json.JSONDecodeError:
# If it's not valid JSON, verify it's valid YAML
try:
yaml.safe_load(content)
except yaml.YAMLError as err:
raise ValueError(
f"Failed to parse the content at {config} as YAML: {err}"
) from err
# Write the content to a file if it's valid YAML (or JSON treated as YAML)
output_path = Path(temp_dir) / filename
with open(output_path, "wb") as file:
file.write(content)
LOG.info(
f"Using the following config obtained from {config}:\n\n{content.decode('utf-8')}\n"
)
return output_path
except requests.RequestException as err:
# This catches all requests-related exceptions including HTTPError
raise RuntimeError(f"Failed to download {config}: {err}") from err
except Exception as err:
# Catch-all for any other exceptions
raise err
def get_multi_line_input() -> Optional[str]:
print("Give me an instruction (Ctrl + D to submit): ")
instruction = ""
for line in sys.stdin:
instruction += line # pylint: disable=consider-using-join
# instruction = pathlib.Path("/proc/self/fd/0").read_text()
return instruction
def do_merge_lora(
*,
cfg: DictDefault,
cli_args: TrainerCliArgs,
):
model, tokenizer = load_model_and_tokenizer(cfg=cfg, cli_args=cli_args)
safe_serialization = cfg.save_safetensors is True
LOG.info("running merge of LoRA with base model")
model = model.merge_and_unload(progressbar=True)
try:
model.to(dtype=cfg.torch_dtype)
except RuntimeError:
pass
model.generation_config.do_sample = True
if cfg.local_rank == 0:
LOG.info(f"saving merged model to: {str(Path(cfg.output_dir) / 'merged')}")
model.save_pretrained(
str(Path(cfg.output_dir) / "merged"),
safe_serialization=safe_serialization,
progressbar=True,
)
tokenizer.save_pretrained(str(Path(cfg.output_dir) / "merged"))
def do_inference(
*,
cfg: DictDefault,
cli_args: TrainerCliArgs,
):
model, tokenizer = load_model_and_tokenizer(cfg=cfg, cli_args=cli_args)
prompter = cli_args.prompter
default_tokens = {"unk_token": "<unk>", "bos_token": "<s>", "eos_token": "</s>"}
for token, symbol in default_tokens.items():
# If the token isn't already specified in the config, add it
if not (cfg.special_tokens and token in cfg.special_tokens):
tokenizer.add_special_tokens({token: symbol})
prompter_module = None
if prompter:
prompter_module = getattr(
importlib.import_module("axolotl.prompters"), prompter
)
model = model.to(cfg.device, dtype=cfg.torch_dtype)
while True:
print("=" * 80)
# support for multiline inputs
instruction = get_multi_line_input()
if not instruction:
return
if prompter_module:
prompt: str = next(
prompter_module().build_prompt(instruction=instruction.strip("\n"))
)
else:
prompt = instruction.strip()
batch = tokenizer(prompt, return_tensors="pt", add_special_tokens=True)
print("=" * 40)
model.eval()
with torch.no_grad():
generation_config = GenerationConfig(
repetition_penalty=1.1,
max_new_tokens=1024,
temperature=0.9,
top_p=0.95,
top_k=40,
bos_token_id=tokenizer.bos_token_id,
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.pad_token_id,
do_sample=True,
use_cache=True,
return_dict_in_generate=True,
output_attentions=False,
output_hidden_states=False,
output_scores=False,
)
streamer = TextStreamer(tokenizer)
generated = model.generate(
inputs=batch["input_ids"].to(cfg.device),
generation_config=generation_config,
streamer=streamer,
)
print("=" * 40)
print(tokenizer.decode(generated["sequences"].cpu().tolist()[0]))
def do_inference_gradio(
*,
cfg: DictDefault,
cli_args: TrainerCliArgs,
):
import gradio as gr
model, tokenizer = load_model_and_tokenizer(cfg=cfg, cli_args=cli_args)
prompter = cli_args.prompter
default_tokens = {"unk_token": "<unk>", "bos_token": "<s>", "eos_token": "</s>"}
for token, symbol in default_tokens.items():
# If the token isn't already specified in the config, add it
if not (cfg.special_tokens and token in cfg.special_tokens):
tokenizer.add_special_tokens({token: symbol})
prompter_module = None
if prompter:
prompter_module = getattr(
importlib.import_module("axolotl.prompters"), prompter
)
model = model.to(cfg.device, dtype=cfg.torch_dtype)
def generate(instruction):
if not instruction:
return
if prompter_module:
# pylint: disable=stop-iteration-return
prompt: str = next(
prompter_module().build_prompt(instruction=instruction.strip("\n"))
)
else:
prompt = instruction.strip()
batch = tokenizer(prompt, return_tensors="pt", add_special_tokens=True)
model.eval()
with torch.no_grad():
generation_config = GenerationConfig(
repetition_penalty=1.1,
max_new_tokens=1024,
temperature=0.9,
top_p=0.95,
top_k=40,
bos_token_id=tokenizer.bos_token_id,
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.pad_token_id,
do_sample=True,
use_cache=True,
return_dict_in_generate=True,
output_attentions=False,
output_hidden_states=False,
output_scores=False,
)
streamer = TextIteratorStreamer(tokenizer)
generation_kwargs = {
"inputs": batch["input_ids"].to(cfg.device),
"generation_config": generation_config,
"streamer": streamer,
}
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
all_text = ""
for new_text in streamer:
all_text += new_text
yield all_text
demo = gr.Interface(
fn=generate,
inputs="textbox",
outputs="text",
title=cfg.get("gradio_title", "Axolotl Gradio Interface"),
)
demo.queue().launch(show_api=False, share=True)
def choose_config(path: Path):
yaml_files = list(path.glob("*.yml"))
if not yaml_files:
raise ValueError(
"No YAML config files found in the specified directory. Are you using a .yml extension?"
)
if len(yaml_files) == 1:
print(f"Using default YAML file '{yaml_files[0]}'")
return yaml_files[0]
print("Choose a YAML file:")
for idx, file in enumerate(yaml_files):
print(f"{idx + 1}. {file}")
chosen_file = None
while chosen_file is None:
try:
choice = int(input("Enter the number of your choice: "))
if 1 <= choice <= len(yaml_files):
chosen_file = yaml_files[choice - 1]
else:
print("Invalid choice. Please choose a number from the list.")
except ValueError:
print("Invalid input. Please enter a number.")
return chosen_file
def check_not_in(list1: List[str], list2: Union[Dict[str, Any], List[str]]) -> bool:
return not any(el in list2 for el in list1)
def load_cfg(config: Union[str, Path] = Path("examples/"), **kwargs):
config = check_remote_config(config)
if Path(config).is_dir():
config = choose_config(Path(config))
# load the config from the yaml file
with open(config, encoding="utf-8") as file:
cfg: DictDefault = DictDefault(yaml.safe_load(file))
# if there are any options passed in the cli, if it is something that seems valid from the yaml,
# then overwrite the value
cfg_keys = cfg.keys()
for k, _ in kwargs.items():
# if not strict, allow writing to cfg even if it's not in the yml already
if k in cfg_keys or not cfg.strict:
# handle booleans
if isinstance(cfg[k], bool):
cfg[k] = bool(kwargs[k])
else:
cfg[k] = kwargs[k]
cfg.axolotl_config_path = config
try:
device_props = torch.cuda.get_device_properties("cuda")
gpu_version = "sm_" + str(device_props.major) + str(device_props.minor)
except: # pylint: disable=bare-except # noqa: E722
gpu_version = None
cfg = validate_config(
cfg,
capabilities={
"bf16": is_torch_bf16_gpu_available(),
"n_gpu": os.environ.get("WORLD_SIZE", 1),
"compute_capability": gpu_version,
},
)
prepare_optim_env(cfg)
normalize_config(cfg)
normalize_cfg_datasets(cfg)
setup_wandb_env_vars(cfg)
setup_mlflow_env_vars(cfg)
return cfg
def load_datasets(
*,
cfg: DictDefault,
cli_args: TrainerCliArgs,
) -> TrainDatasetMeta:
tokenizer = load_tokenizer(cfg)
train_dataset, eval_dataset, total_num_steps, prompters = prepare_dataset(
cfg, tokenizer
)
if cli_args.debug or cfg.debug:
LOG.info("check_dataset_labels...")
check_dataset_labels(
train_dataset.select(
[
random.randrange(0, len(train_dataset) - 1) # nosec
for _ in range(cli_args.debug_num_examples)
]
),
tokenizer,
num_examples=cli_args.debug_num_examples,
text_only=cli_args.debug_text_only,
)
LOG.info("printing prompters...")
for prompter in prompters:
LOG.info(prompter)
return TrainDatasetMeta(
train_dataset=train_dataset,
eval_dataset=eval_dataset,
total_num_steps=total_num_steps,
)
def load_rl_datasets(
*,
cfg: DictDefault,
cli_args: TrainerCliArgs, # pylint: disable=unused-argument
) -> TrainDatasetMeta:
train_dataset, eval_dataset = load_prepare_dpo_datasets(cfg)
total_num_steps = int(
math.ceil(len(train_dataset) * cfg.num_epochs / cfg.batch_size)
)
return TrainDatasetMeta(
train_dataset=train_dataset,
eval_dataset=eval_dataset,
total_num_steps=total_num_steps,
)
def check_accelerate_default_config():
if Path(config_args.default_yaml_config_file).exists():
LOG.warning(
f"accelerate config file found at {config_args.default_yaml_config_file}. This can lead to unexpected errors"
)
def check_user_token():
# Skip check if HF_HUB_OFFLINE is set to True
if os.getenv("HF_HUB_OFFLINE") == "1":
LOG.info(
"Skipping HuggingFace token verification because HF_HUB_OFFLINE is set to True. Only local files will be used."
)
return True
# Verify if token is valid
api = HfApi()
try:
user_info = api.whoami()
return bool(user_info)
except LocalTokenNotFoundError:
LOG.warning(
"Error verifying HuggingFace token. Remember to log in using `huggingface-cli login` and get your access token from https://huggingface.co/settings/tokens if you want to use gated models or datasets."
)
return False
|