File size: 9,219 Bytes
392dfd9 9105935 05fffb5 ce24f5e 949a27b ce24f5e 37293dc ce24f5e 125cccb ce24f5e 37293dc 548787d fec6bcc ce24f5e b21e4a2 b1f4f7a b21e4a2 8cec513 2e22404 37293dc 29241cf b21e4a2 37293dc 6045345 ce24f5e 392dfd9 553a86b d75adb9 05fffb5 a6028d3 548787d b21e4a2 29241cf 247825b 47ad389 247825b 82971e1 247825b b21e4a2 f36e227 fec6bcc 87e073d c4e4f81 6045345 572d114 974dc00 572d114 17605b8 d653859 fec6bcc 9105935 247825b d653859 c4e4f81 d653859 572d114 fec6bcc d653859 988aeb9 d653859 33d4017 d653859 988aeb9 56f9ca5 d653859 fec6bcc 988aeb9 fec6bcc 988aeb9 fec6bcc d653859 949a27b f2a2029 82971e1 f2a2029 87d7825 f2a2029 36b2e1c f2a2029 cc67862 125cccb b21e4a2 48434be b21e4a2 48434be b21e4a2 125cccb b21e4a2 125cccb ce24f5e b21e4a2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 |
"""Prepare and train a model on a dataset. Can also infer from a model or merge lora"""
import importlib
import logging
import os
import random
import sys
from pathlib import Path
from typing import Any, Dict, List, Optional, Union
import fire
import torch
import transformers
import yaml
# add src to the pythonpath so we don't need to pip install this
from art import text2art
from transformers import GenerationConfig, TextStreamer
from axolotl.common.cli import TrainerCliArgs, load_model_and_tokenizer
from axolotl.logging_config import configure_logging
from axolotl.train import TrainDatasetMeta, train
from axolotl.utils.config import normalize_config, validate_config
from axolotl.utils.data import prepare_dataset
from axolotl.utils.dict import DictDefault
from axolotl.utils.distributed import is_main_process
from axolotl.utils.models import load_model_config, load_tokenizer
from axolotl.utils.tokenization import check_dataset_labels
from axolotl.utils.wandb import setup_wandb_env_vars
project_root = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
src_dir = os.path.join(project_root, "src")
sys.path.insert(0, src_dir)
configure_logging()
LOG = logging.getLogger("axolotl.scripts")
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
def print_axolotl_text_art(suffix=None):
font = "nancyj"
ascii_text = " axolotl"
if suffix:
ascii_text += f" x {suffix}"
ascii_art = text2art(" axolotl", font=font)
if is_main_process():
print(ascii_art)
def get_multi_line_input() -> Optional[str]:
print("Give me an instruction (Ctrl + D to finish): ")
instruction = ""
for line in sys.stdin:
instruction += line # pylint: disable=consider-using-join
# instruction = pathlib.Path("/proc/self/fd/0").read_text()
return instruction
def do_merge_lora(
*,
cfg: DictDefault,
cli_args: TrainerCliArgs,
):
model, tokenizer = load_model_and_tokenizer(cfg=cfg, cli_args=cli_args)
safe_serialization = cfg.save_safetensors is True
LOG.info("running merge of LoRA with base model")
model = model.merge_and_unload()
model.to(dtype=torch.float16)
if cfg.local_rank == 0:
LOG.info("saving merged model")
model.save_pretrained(
str(Path(cfg.output_dir) / "merged"),
safe_serialization=safe_serialization,
)
tokenizer.save_pretrained(str(Path(cfg.output_dir) / "merged"))
def shard(
*,
cfg: DictDefault,
cli_args: TrainerCliArgs,
):
model, _ = load_model_and_tokenizer(cfg=cfg, cli_args=cli_args)
safe_serialization = cfg.save_safetensors is True
LOG.debug("Re-saving model w/ sharding")
model.save_pretrained(cfg.output_dir, safe_serialization=safe_serialization)
def do_inference(
*,
cfg: DictDefault,
cli_args: TrainerCliArgs,
):
model, tokenizer = load_model_and_tokenizer(cfg=cfg, cli_args=cli_args)
prompter = cli_args.prompter
default_tokens = {"unk_token": "<unk>", "bos_token": "<s>", "eos_token": "</s>"}
for token, symbol in default_tokens.items():
# If the token isn't already specified in the config, add it
if not (cfg.special_tokens and token in cfg.special_tokens):
tokenizer.add_special_tokens({token: symbol})
prompter_module = None
if prompter:
prompter_module = getattr(
importlib.import_module("axolotl.prompters"), prompter
)
if cfg.landmark_attention:
from axolotl.monkeypatch.llama_landmark_attn import set_model_mem_id
set_model_mem_id(model, tokenizer)
model.set_mem_cache_args(
max_seq_len=255, mem_freq=50, top_k=5, max_cache_size=None
)
model = model.to(cfg.device)
while True:
print("=" * 80)
# support for multiline inputs
instruction = get_multi_line_input()
if not instruction:
return
if prompter_module:
prompt: str = next(
prompter_module().build_prompt(instruction=instruction.strip("\n"))
)
else:
prompt = instruction.strip()
batch = tokenizer(prompt, return_tensors="pt", add_special_tokens=True)
print("=" * 40)
model.eval()
with torch.no_grad():
generation_config = GenerationConfig(
repetition_penalty=1.1,
max_new_tokens=1024,
temperature=0.9,
top_p=0.95,
top_k=40,
bos_token_id=tokenizer.bos_token_id,
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.pad_token_id,
do_sample=True,
use_cache=True,
return_dict_in_generate=True,
output_attentions=False,
output_hidden_states=False,
output_scores=False,
)
streamer = TextStreamer(tokenizer)
generated = model.generate(
inputs=batch["input_ids"].to(cfg.device),
generation_config=generation_config,
streamer=streamer,
)
print("=" * 40)
print(tokenizer.decode(generated["sequences"].cpu().tolist()[0]))
def choose_config(path: Path):
yaml_files = list(path.glob("*.yml"))
if not yaml_files:
raise ValueError(
"No YAML config files found in the specified directory. Are you using a .yml extension?"
)
if len(yaml_files) == 1:
print(f"Using default YAML file '{yaml_files[0]}'")
return yaml_files[0]
print("Choose a YAML file:")
for idx, file in enumerate(yaml_files):
print(f"{idx + 1}. {file}")
chosen_file = None
while chosen_file is None:
try:
choice = int(input("Enter the number of your choice: "))
if 1 <= choice <= len(yaml_files):
chosen_file = yaml_files[choice - 1]
else:
print("Invalid choice. Please choose a number from the list.")
except ValueError:
print("Invalid input. Please enter a number.")
return chosen_file
def check_not_in(list1: List[str], list2: Union[Dict[str, Any], List[str]]) -> bool:
return not any(el in list2 for el in list1)
def load_cfg(config: Path = Path("examples/"), **kwargs):
if Path(config).is_dir():
config = choose_config(config)
# load the config from the yaml file
with open(config, encoding="utf-8") as file:
cfg: DictDefault = DictDefault(yaml.safe_load(file))
# if there are any options passed in the cli, if it is something that seems valid from the yaml,
# then overwrite the value
cfg_keys = cfg.keys()
for k, _ in kwargs.items():
# if not strict, allow writing to cfg even if it's not in the yml already
if k in cfg_keys or not cfg.strict:
# handle booleans
if isinstance(cfg[k], bool):
cfg[k] = bool(kwargs[k])
else:
cfg[k] = kwargs[k]
model_config = load_model_config(cfg)
# figure out if the model is llama
cfg.is_llama_derived_model = (
(hasattr(model_config, "model_type") and model_config.model_type == "llama")
or cfg.is_llama_derived_model
or "llama" in cfg.base_model
or (cfg.model_type and "llama" in cfg.model_type.lower())
)
validate_config(cfg)
normalize_config(cfg)
setup_wandb_env_vars(cfg)
return cfg
def load_datasets(
*,
cfg: DictDefault,
cli_args: TrainerCliArgs,
) -> TrainDatasetMeta:
tokenizer = load_tokenizer(cfg)
train_dataset, eval_dataset, total_num_steps = prepare_dataset(cfg, tokenizer)
if cli_args.debug or cfg.debug:
LOG.info("check_dataset_labels...")
check_dataset_labels(
train_dataset.select(
[
random.randrange(0, len(train_dataset) - 1) # nosec
for _ in range(cli_args.debug_num_examples)
]
),
tokenizer,
num_examples=cli_args.debug_num_examples,
text_only=cli_args.debug_text_only,
)
return TrainDatasetMeta(
train_dataset=train_dataset,
eval_dataset=eval_dataset,
total_num_steps=total_num_steps,
)
def do_cli(config: Path = Path("examples/"), **kwargs):
print_axolotl_text_art()
parsed_cfg = load_cfg(config, **kwargs)
parser = transformers.HfArgumentParser((TrainerCliArgs))
parsed_cli_args, _ = parser.parse_args_into_dataclasses(
return_remaining_strings=True
)
if parsed_cli_args.inference:
do_inference(cfg=parsed_cfg, cli_args=parsed_cli_args)
elif parsed_cli_args.merge_lora:
do_merge_lora(cfg=parsed_cfg, cli_args=parsed_cli_args)
elif parsed_cli_args.shard:
shard(cfg=parsed_cfg, cli_args=parsed_cli_args)
else:
dataset_meta = load_datasets(cfg=parsed_cfg, cli_args=parsed_cli_args)
if parsed_cli_args.prepare_ds_only:
return
train(cfg=parsed_cfg, cli_args=parsed_cli_args, dataset_meta=dataset_meta)
if __name__ == "__main__":
fire.Fire(do_cli)
|