File size: 1,268 Bytes
861ceca f6ecf14 63fb3eb f6ecf14 861ceca 63fb3eb 23495a8 861ceca 8dcd40a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
"""
CLI to run merge a trained LoRA into a base model
"""
from pathlib import Path
import fire
import transformers
from axolotl.cli import do_merge_lora, load_cfg, print_axolotl_text_art
from axolotl.common.cli import TrainerCliArgs
def do_cli(config: Path = Path("examples/"), **kwargs):
# pylint: disable=duplicate-code
print_axolotl_text_art()
parser = transformers.HfArgumentParser((TrainerCliArgs))
parsed_cli_args, _ = parser.parse_args_into_dataclasses(
return_remaining_strings=True
)
parsed_cli_args.merge_lora = True
parsed_cfg = load_cfg(
config,
merge_lora=True,
load_in_8bit=False,
load_in_4bit=False,
flash_attention=False,
**kwargs,
)
if not parsed_cfg.lora_model_dir and parsed_cfg.output_dir:
parsed_cfg.lora_model_dir = parsed_cfg.output_dir
if not Path(parsed_cfg.lora_model_dir).exists():
raise ValueError(
f"Target directory for merge: `{parsed_cfg.lora_model_dir}` does not exist."
)
parsed_cfg.load_in_4bit = False
parsed_cfg.load_in_8bit = False
parsed_cfg.flash_attention = False
do_merge_lora(cfg=parsed_cfg, cli_args=parsed_cli_args)
if __name__ == "__main__":
fire.Fire(do_cli)
|