File size: 1,268 Bytes
861ceca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6ecf14
 
 
 
 
 
 
63fb3eb
f6ecf14
861ceca
63fb3eb
 
 
 
 
 
 
23495a8
 
 
 
861ceca
 
 
8dcd40a
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
"""
CLI to run merge a trained LoRA into a base model
"""
from pathlib import Path

import fire
import transformers

from axolotl.cli import do_merge_lora, load_cfg, print_axolotl_text_art
from axolotl.common.cli import TrainerCliArgs


def do_cli(config: Path = Path("examples/"), **kwargs):
    # pylint: disable=duplicate-code
    print_axolotl_text_art()
    parser = transformers.HfArgumentParser((TrainerCliArgs))
    parsed_cli_args, _ = parser.parse_args_into_dataclasses(
        return_remaining_strings=True
    )
    parsed_cli_args.merge_lora = True

    parsed_cfg = load_cfg(
        config,
        merge_lora=True,
        load_in_8bit=False,
        load_in_4bit=False,
        flash_attention=False,
        **kwargs,
    )

    if not parsed_cfg.lora_model_dir and parsed_cfg.output_dir:
        parsed_cfg.lora_model_dir = parsed_cfg.output_dir
    if not Path(parsed_cfg.lora_model_dir).exists():
        raise ValueError(
            f"Target directory for merge: `{parsed_cfg.lora_model_dir}` does not exist."
        )

    parsed_cfg.load_in_4bit = False
    parsed_cfg.load_in_8bit = False
    parsed_cfg.flash_attention = False

    do_merge_lora(cfg=parsed_cfg, cli_args=parsed_cli_args)


if __name__ == "__main__":
    fire.Fire(do_cli)