qwerrwe / tests /e2e /test_mistral.py
Nanobit's picture
Feat: Allow usage of native Mistral FA when no sample_packing (#669)
697c50d unverified
raw
history blame
3.84 kB
"""
E2E tests for lora llama
"""
import logging
import os
import tempfile
import unittest
from pathlib import Path
from transformers.utils import is_torch_bf16_gpu_available
from axolotl.cli import load_datasets
from axolotl.common.cli import TrainerCliArgs
from axolotl.train import train
from axolotl.utils.config import normalize_config
from axolotl.utils.dict import DictDefault
LOG = logging.getLogger("axolotl.tests.e2e")
os.environ["WANDB_DISABLED"] = "true"
class TestMistral(unittest.TestCase):
"""
Test case for Llama models using LoRA
"""
def test_lora(self):
# pylint: disable=duplicate-code
output_dir = tempfile.mkdtemp()
cfg = DictDefault(
{
"base_model": "openaccess-ai-collective/tiny-mistral",
"base_model_config": "openaccess-ai-collective/tiny-mistral",
"flash_attention": True,
"sequence_len": 1024,
"load_in_8bit": True,
"adapter": "lora",
"lora_r": 32,
"lora_alpha": 64,
"lora_dropout": 0.05,
"lora_target_linear": True,
"val_set_size": 0.1,
"special_tokens": {
"unk_token": "<unk>",
"bos_token": "<s>",
"eos_token": "</s>",
},
"datasets": [
{
"path": "mhenrichsen/alpaca_2k_test",
"type": "alpaca",
},
],
"num_epochs": 2,
"micro_batch_size": 2,
"gradient_accumulation_steps": 1,
"output_dir": output_dir,
"learning_rate": 0.00001,
"optimizer": "adamw_torch",
"lr_scheduler": "cosine",
"max_steps": 20,
"save_steps": 10,
"eval_steps": 10,
}
)
normalize_config(cfg)
cli_args = TrainerCliArgs()
dataset_meta = load_datasets(cfg=cfg, cli_args=cli_args)
train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta)
assert (Path(output_dir) / "adapter_model.bin").exists()
def test_ft(self):
# pylint: disable=duplicate-code
output_dir = tempfile.mkdtemp()
cfg = DictDefault(
{
"base_model": "openaccess-ai-collective/tiny-mistral",
"base_model_config": "openaccess-ai-collective/tiny-mistral",
"flash_attention": True,
"sequence_len": 1024,
"val_set_size": 0.1,
"special_tokens": {
"unk_token": "<unk>",
"bos_token": "<s>",
"eos_token": "</s>",
},
"datasets": [
{
"path": "mhenrichsen/alpaca_2k_test",
"type": "alpaca",
},
],
"num_epochs": 2,
"micro_batch_size": 2,
"gradient_accumulation_steps": 1,
"output_dir": output_dir,
"learning_rate": 0.00001,
"optimizer": "adamw_torch",
"lr_scheduler": "cosine",
"max_steps": 20,
"save_steps": 10,
"eval_steps": 10,
}
)
if is_torch_bf16_gpu_available():
cfg.bf16 = True
else:
cfg.fp16 = True
normalize_config(cfg)
cli_args = TrainerCliArgs()
dataset_meta = load_datasets(cfg=cfg, cli_args=cli_args)
train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta)
assert (Path(output_dir) / "pytorch_model.bin").exists()