|
""" |
|
Patched LlamaAttention to use torch.nn.functional.scaled_dot_product_attention |
|
""" |
|
|
|
import warnings |
|
from typing import Optional, Tuple |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
import transformers.models.llama.modeling_llama |
|
from transformers.models.llama.modeling_llama import apply_rotary_pos_emb, repeat_kv |
|
|
|
|
|
def hijack_llama_sdp_attention(): |
|
transformers.models.llama.modeling_llama.LlamaAttention.forward = ( |
|
sdp_attention_forward |
|
) |
|
|
|
|
|
def sdp_attention_forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Tuple[torch.Tensor]] = None, |
|
output_attentions: bool = False, |
|
use_cache: bool = False, |
|
padding_mask: Optional[torch.LongTensor] = None, |
|
**kwargs, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
|
|
bsz, q_len, _ = hidden_states.size() |
|
|
|
if not hasattr(self, "pretraining_tp"): |
|
self.pretraining_tp = 1 |
|
|
|
if self.pretraining_tp > 1: |
|
key_value_slicing = ( |
|
self.num_key_value_heads * self.head_dim |
|
) // self.pretraining_tp |
|
query_slices = self.q_proj.weight.split( |
|
(self.num_heads * self.head_dim) // self.pretraining_tp, dim=0 |
|
) |
|
key_slices = self.k_proj.weight.split(key_value_slicing, dim=0) |
|
value_slices = self.v_proj.weight.split(key_value_slicing, dim=0) |
|
|
|
query_states = [ |
|
F.linear(hidden_states, query_slices[i]) for i in range(self.pretraining_tp) |
|
] |
|
query_states = torch.cat(query_states, dim=-1) |
|
|
|
key_states = [ |
|
F.linear(hidden_states, key_slices[i]) for i in range(self.pretraining_tp) |
|
] |
|
key_states = torch.cat(key_states, dim=-1) |
|
|
|
value_states = [ |
|
F.linear(hidden_states, value_slices[i]) for i in range(self.pretraining_tp) |
|
] |
|
value_states = torch.cat(value_states, dim=-1) |
|
|
|
else: |
|
query_states = self.q_proj(hidden_states) |
|
key_states = self.k_proj(hidden_states) |
|
value_states = self.v_proj(hidden_states) |
|
|
|
query_states = query_states.view( |
|
bsz, q_len, self.num_heads, self.head_dim |
|
).transpose(1, 2) |
|
key_states = key_states.view( |
|
bsz, q_len, self.num_key_value_heads, self.head_dim |
|
).transpose(1, 2) |
|
value_states = value_states.view( |
|
bsz, q_len, self.num_key_value_heads, self.head_dim |
|
).transpose(1, 2) |
|
|
|
|
|
|
|
kv_seq_len = key_states.shape[-2] |
|
if past_key_value is not None: |
|
kv_seq_len += past_key_value[0].shape[-2] |
|
|
|
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) |
|
query_states, key_states = apply_rotary_pos_emb( |
|
query_states, key_states, cos, sin, position_ids |
|
) |
|
|
|
|
|
if past_key_value is not None: |
|
|
|
key_states = torch.cat([past_key_value[0], key_states], dim=2) |
|
value_states = torch.cat([past_key_value[1], value_states], dim=2) |
|
|
|
past_key_value = (key_states, value_states) if use_cache else None |
|
|
|
|
|
key_states = repeat_kv(key_states, self.num_key_value_groups) |
|
value_states = repeat_kv(value_states, self.num_key_value_groups) |
|
|
|
if output_attentions: |
|
warnings.warn( |
|
"Output attentions is not supported for patched `LlamaAttention`, returning `None` instead." |
|
) |
|
|
|
|
|
|
|
|
|
|
|
with torch.backends.cuda.sdp_kernel(): |
|
attn_output = torch.nn.functional.scaled_dot_product_attention( |
|
query_states, |
|
key_states, |
|
value_states, |
|
attn_mask=attention_mask, |
|
is_causal=False, |
|
) |
|
|
|
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): |
|
raise ValueError( |
|
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" |
|
f" {attn_output.size()}" |
|
) |
|
attn_output = attn_output.transpose(1, 2) |
|
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) |
|
|
|
|
|
|
|
|
|
|
|
if self.pretraining_tp > 1: |
|
attn_output = attn_output.split(self.hidden_size // self.pretraining_tp, dim=2) |
|
o_proj_slices = self.o_proj.weight.split( |
|
self.hidden_size // self.pretraining_tp, dim=1 |
|
) |
|
attn_output = sum( |
|
F.linear(attn_output[i], o_proj_slices[i]) |
|
for i in range(self.pretraining_tp) |
|
) |
|
else: |
|
attn_output = self.o_proj(attn_output) |
|
|
|
return attn_output, None, past_key_value |
|
|