#Mistral-7b | |
base_model: mistralai/Mistral-7B-v0.1 | |
model_type: MistralForCausalLM | |
tokenizer_type: LlamaTokenizer | |
load_in_8bit: true | |
load_in_4bit: false | |
strict: false | |
datasets: | |
- path: tilemachos/Demo-Dataset #Path to json dataset file in huggingface | |
#for type,conversation arguments read axolotl readme and pick what is suited for your project, I wanted a chatbot and put sharegpt and chatml | |
type: sharegpt | |
conversation: chatml | |
dataset_prepared_path: tilemachos/Demo-Dataset #Path to json dataset file in huggingface | |
val_set_size: 0.05 | |
output_dir: ./out | |
#using lora for lower cost | |
adapter: lora | |
lora_r: 8 | |
lora_alpha: 16 | |
lora_dropout: 0.05 | |
lora_target_modules: | |
- q_proj | |
- v_proj | |
sequence_len: 512 | |
sample_packing: false | |
pad_to_sequence_len: true | |
wandb_project: | |
wandb_entity: | |
wandb_watch: | |
wandb_name: | |
wandb_log_model: | |
#only 2 epochs because of small dataset | |
gradient_accumulation_steps: 3 | |
micro_batch_size: 2 | |
num_epochs: 2 | |
optimizer: adamw_bnb_8bit | |
lr_scheduler: cosine | |
learning_rate: 0.0002 | |
train_on_inputs: false | |
group_by_length: false | |
bf16: true | |
fp16: false | |
tf32: false | |
gradient_checkpointing: true | |
early_stopping_patience: | |
resume_from_checkpoint: | |
local_rank: | |
logging_steps: 1 | |
xformers_attention: | |
flash_attention: true | |
warmup_steps: 10 | |
evals_per_epoch: 4 | |
eval_table_size: | |
eval_max_new_tokens: 128 | |
saves_per_epoch: 1 | |
debug: | |
#default deepspeed, can use more aggresive if needed like zero2, zero3 | |
deepspeed: deepspeed_configs/zero1.json | |
weight_decay: 0.0 | |
fsdp: | |
fsdp_config: | |
special_tokens: | |
bos_token: "<s>" | |
eos_token: "</s>" | |
unk_token: "<unk>" | |