qwerrwe / tests /e2e /test_relora_llama.py
winglian's picture
relora: magnitude pruning of the optimizer (#1245)
8c2e05a unverified
raw
history blame
2.1 kB
"""
E2E tests for relora llama
"""
import logging
import os
import unittest
from pathlib import Path
from axolotl.cli import load_datasets
from axolotl.common.cli import TrainerCliArgs
from axolotl.train import train
from axolotl.utils.config import normalize_config
from axolotl.utils.dict import DictDefault
from .utils import with_temp_dir
LOG = logging.getLogger("axolotl.tests.e2e")
os.environ["WANDB_DISABLED"] = "true"
class TestReLoraLlama(unittest.TestCase):
"""
Test case for Llama models using LoRA
"""
@with_temp_dir
def test_relora(self, temp_dir):
# pylint: disable=duplicate-code
cfg = DictDefault(
{
"base_model": "JackFram/llama-68m",
"tokenizer_type": "LlamaTokenizer",
"sequence_len": 1024,
"load_in_8bit": True,
"adapter": "lora",
"lora_r": 32,
"lora_alpha": 16,
"lora_dropout": 0.05,
"lora_target_modules": ["q_proj", "v_proj"],
"relora_steps": 25,
"relora_warmup_steps": 5,
"relora_anneal_steps": 5,
"relora_cpu_offload": True,
"val_set_size": 0.0,
"special_tokens": {},
"datasets": [
{
"path": "mhenrichsen/alpaca_2k_test",
"type": "alpaca",
},
],
"warmup_steps": 15,
"num_epochs": 2,
"micro_batch_size": 4,
"gradient_accumulation_steps": 1,
"output_dir": temp_dir,
"learning_rate": 0.00001,
"optimizer": "adamw_torch",
"lr_scheduler": "cosine",
}
)
normalize_config(cfg)
cli_args = TrainerCliArgs()
dataset_meta = load_datasets(cfg=cfg, cli_args=cli_args)
train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta)
assert (Path(temp_dir) / "model.safetensors").exists()