qwerrwe / tests /e2e /test_mixtral.py
winglian's picture
keep gate in fp32 for 16 bit loras (#1105)
da97285 unverified
raw
history blame
9.75 kB
"""
E2E tests for mixtral
"""
import logging
import os
import unittest
from pathlib import Path
import torch
from transformers.utils import is_torch_bf16_gpu_available
from axolotl.cli import load_datasets
from axolotl.common.cli import TrainerCliArgs
from axolotl.train import train
from axolotl.utils.config import normalize_config
from axolotl.utils.dict import DictDefault
from .utils import with_temp_dir
LOG = logging.getLogger("axolotl.tests.e2e")
os.environ["WANDB_DISABLED"] = "true"
class TestMixtral(unittest.TestCase):
"""
Test case for Llama models using LoRA
"""
@with_temp_dir
def test_qlora_w_fa2(self, temp_dir):
# pylint: disable=duplicate-code
cfg = DictDefault(
{
"base_model": "hf-internal-testing/Mixtral-tiny",
"tokenizer_config": "mistralai/Mixtral-8x7B-v0.1",
"flash_attention": True,
"sequence_len": 1024,
"load_in_4bit": True,
"adapter": "qlora",
"lora_r": 4,
"lora_alpha": 8,
"lora_dropout": 0.1,
"lora_target_modules": [
"o_proj",
"w3",
"k_proj",
"v_proj",
"w1",
"q_proj",
"w2",
],
"val_set_size": 0.1,
"special_tokens": {},
"datasets": [
{
"path": "mhenrichsen/alpaca_2k_test",
"type": "alpaca",
},
],
"num_epochs": 2,
"micro_batch_size": 2,
"gradient_accumulation_steps": 1,
"output_dir": temp_dir,
"learning_rate": 0.00001,
"optimizer": "adamw_bnb_8bit",
"lr_scheduler": "cosine",
"max_steps": 20,
"save_steps": 10,
"eval_steps": 10,
}
)
normalize_config(cfg)
cli_args = TrainerCliArgs()
dataset_meta = load_datasets(cfg=cfg, cli_args=cli_args)
model, _ = train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta)
assert (
model.base_model.model.model.layers[0].block_sparse_moe.gate.weight.dtype
== torch.uint8
)
assert (Path(temp_dir) / "adapter_model.bin").exists()
@with_temp_dir
def test_qlora_wo_fa2(self, temp_dir):
# pylint: disable=duplicate-code
cfg = DictDefault(
{
"base_model": "hf-internal-testing/Mixtral-tiny",
"tokenizer_config": "mistralai/Mixtral-8x7B-v0.1",
"flash_attention": False,
"sequence_len": 1024,
"load_in_4bit": True,
"adapter": "qlora",
"lora_r": 4,
"lora_alpha": 8,
"lora_dropout": 0.1,
"lora_target_modules": [
"o_proj",
"w3",
"k_proj",
"v_proj",
"w1",
"q_proj",
"w2",
],
"val_set_size": 0.1,
"special_tokens": {},
"datasets": [
{
"path": "mhenrichsen/alpaca_2k_test",
"type": "alpaca",
},
],
"num_epochs": 2,
"micro_batch_size": 2,
"gradient_accumulation_steps": 1,
"output_dir": temp_dir,
"learning_rate": 0.00001,
"optimizer": "adamw_bnb_8bit",
"lr_scheduler": "cosine",
"max_steps": 20,
"save_steps": 10,
"eval_steps": 10,
}
)
normalize_config(cfg)
cli_args = TrainerCliArgs()
dataset_meta = load_datasets(cfg=cfg, cli_args=cli_args)
model, _ = train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta)
assert (
model.base_model.model.model.layers[0].block_sparse_moe.gate.weight.dtype
== torch.uint8
)
assert (Path(temp_dir) / "adapter_model.bin").exists()
@with_temp_dir
def test_16bit_lora_w_fa2(self, temp_dir):
# pylint: disable=duplicate-code
cfg = DictDefault(
{
"base_model": "hf-internal-testing/Mixtral-tiny",
"tokenizer_config": "mistralai/Mixtral-8x7B-v0.1",
"flash_attention": True,
"sequence_len": 1024,
"adapter": "lora",
"lora_r": 4,
"lora_alpha": 8,
"lora_dropout": 0.1,
"lora_target_modules": [
"o_proj",
"w3",
"k_proj",
"v_proj",
"w1",
"q_proj",
"w2",
],
"val_set_size": 0.1,
"special_tokens": {},
"datasets": [
{
"path": "mhenrichsen/alpaca_2k_test",
"type": "alpaca",
},
],
"num_epochs": 2,
"micro_batch_size": 2,
"gradient_accumulation_steps": 1,
"output_dir": temp_dir,
"learning_rate": 0.00001,
"optimizer": "adamw_bnb_8bit",
"lr_scheduler": "cosine",
"max_steps": 20,
"save_steps": 10,
"eval_steps": 10,
}
)
if is_torch_bf16_gpu_available():
cfg.bf16 = True
else:
cfg.fp16 = True
normalize_config(cfg)
cli_args = TrainerCliArgs()
dataset_meta = load_datasets(cfg=cfg, cli_args=cli_args)
model, _ = train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta)
assert (
model.base_model.model.model.layers[0].block_sparse_moe.gate.weight.dtype
== torch.float32
)
assert (Path(temp_dir) / "adapter_model.bin").exists()
@with_temp_dir
def test_16bit_lora_wo_fa2(self, temp_dir):
# pylint: disable=duplicate-code
cfg = DictDefault(
{
"base_model": "hf-internal-testing/Mixtral-tiny",
"tokenizer_config": "mistralai/Mixtral-8x7B-v0.1",
"flash_attention": False,
"sequence_len": 1024,
"adapter": "lora",
"lora_r": 4,
"lora_alpha": 8,
"lora_dropout": 0.1,
"lora_target_modules": [
"o_proj",
"w3",
"k_proj",
"v_proj",
"w1",
"q_proj",
"w2",
],
"val_set_size": 0.1,
"special_tokens": {},
"datasets": [
{
"path": "mhenrichsen/alpaca_2k_test",
"type": "alpaca",
},
],
"num_epochs": 2,
"micro_batch_size": 2,
"gradient_accumulation_steps": 1,
"output_dir": temp_dir,
"learning_rate": 0.00001,
"optimizer": "adamw_bnb_8bit",
"lr_scheduler": "cosine",
"max_steps": 20,
"save_steps": 10,
"eval_steps": 10,
}
)
normalize_config(cfg)
if is_torch_bf16_gpu_available():
cfg.bf16 = True
else:
cfg.fp16 = True
cli_args = TrainerCliArgs()
dataset_meta = load_datasets(cfg=cfg, cli_args=cli_args)
model, _ = train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta)
assert (
model.base_model.model.model.layers[0].block_sparse_moe.gate.weight.dtype
== torch.float32
)
assert (Path(temp_dir) / "adapter_model.bin").exists()
@with_temp_dir
def test_ft(self, temp_dir):
# pylint: disable=duplicate-code
cfg = DictDefault(
{
"base_model": "hf-internal-testing/Mixtral-tiny",
"tokenizer_config": "mistralai/Mixtral-8x7B-v0.1",
"flash_attention": True,
"sequence_len": 1024,
"val_set_size": 0.1,
"special_tokens": {},
"datasets": [
{
"path": "mhenrichsen/alpaca_2k_test",
"type": "alpaca",
},
],
"num_epochs": 2,
"micro_batch_size": 2,
"gradient_accumulation_steps": 1,
"output_dir": temp_dir,
"learning_rate": 0.00001,
"optimizer": "adamw_bnb_8bit",
"lr_scheduler": "cosine",
"max_steps": 20,
"save_steps": 10,
"eval_steps": 10,
}
)
if is_torch_bf16_gpu_available():
cfg.bf16 = True
else:
cfg.fp16 = True
normalize_config(cfg)
cli_args = TrainerCliArgs()
dataset_meta = load_datasets(cfg=cfg, cli_args=cli_args)
train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta)
assert (Path(temp_dir) / "pytorch_model.bin").exists()