winglian's picture
black formatting
2bc1a5b
raw
history blame
10.1 kB
import logging
import os
from pathlib import Path
from typing import Optional, Tuple, TYPE_CHECKING
import torch
import transformers
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
PreTrainedModel,
AutoConfig,
)
try:
from transformers import (
LlamaForCausalLM,
LlamaTokenizer,
)
except:
logging.warning(
"This version of transformers does not support Llama. Consider upgrading."
)
from axolotl.prompt_tokenizers import LLAMA_DEFAULT_PAD_TOKEN
if TYPE_CHECKING:
from peft import PeftModel, PeftConfig
from attrdict import AttrDefault
from transformers import PreTrainedTokenizer
def load_model(
base_model,
base_model_config,
model_type,
tokenizer_type,
cfg,
adapter="lora",
inference=False,
):
# type: (str, str, str, str, AttrDefault, Optional[str], bool) -> Tuple[PreTrainedModel, PreTrainedTokenizer, Optional[PeftConfig]]
# TODO refactor as a kwarg
load_in_8bit = cfg.load_in_8bit
tokenizer = None
is_llama_derived_model = "llama" in base_model or (
cfg.model_type and "llama" in cfg.model_type.lower()
)
if is_llama_derived_model and cfg.flash_attention:
if cfg.device not in ["mps", "cpu"] and inference is False:
from axolotl.flash_attn import replace_llama_attn_with_flash_attn
logging.info("patching with flash attention")
replace_llama_attn_with_flash_attn()
elif is_llama_derived_model and cfg.xformers_attention:
from alpaca_lora_4bit.monkeypatch.llama_attn_hijack_xformers import (
hijack_llama_attention,
)
logging.info("patching with xformers attention")
hijack_llama_attention()
torch_dtype = (
torch.float16 if cfg.load_in_8bit or cfg.fp16 or cfg.bf16 else torch.float32
)
try:
if cfg.load_4bit:
from alpaca_lora_4bit.monkeypatch.peft_tuners_lora_monkey_patch import (
replace_peft_model_with_int4_lora_model,
)
replace_peft_model_with_int4_lora_model()
from peft import prepare_model_for_int8_training
except Exception as e:
logging.exception(e)
raise e
try:
if cfg.load_4bit and is_llama_derived_model:
from alpaca_lora_4bit.autograd_4bit import load_llama_model_4bit_low_ram
from huggingface_hub import snapshot_download
try:
snapshot_download_kwargs = {}
if cfg.base_model_ignore_patterns:
snapshot_download_kwargs[
"ignore_patterns"
] = cfg.base_model_ignore_patterns
cache_model_path = Path(
snapshot_download(base_model, **snapshot_download_kwargs)
)
files = (
list(cache_model_path.glob("*.pt"))
+ list(cache_model_path.glob("*.safetensors"))
+ list(cache_model_path.glob("*.bin"))
)
if len(files) > 0:
model_path = str(files[0])
else:
logging.warning(
"unable to find a cached model file, this will likely fail..."
)
model_path = str(cache_model_path)
except:
model_path = cfg.base_model
model, tokenizer = load_llama_model_4bit_low_ram(
base_model_config if base_model_config else base_model,
model_path,
device_map=cfg.device_map,
groupsize=cfg.gptq_groupsize if cfg.gptq_groupsize else -1,
is_v1_model=cfg.gptq_model_v1
if cfg.gptq_model_v1 is not None
else True,
)
load_in_8bit = False
elif is_llama_derived_model and "LlamaForCausalLM" in globals():
model = LlamaForCausalLM.from_pretrained(
base_model,
load_in_8bit=cfg.load_in_8bit and cfg.adapter is not None,
torch_dtype=torch_dtype,
device_map=cfg.device_map,
)
elif model_type:
model = getattr(transformers, model_type).from_pretrained(
base_model,
load_in_8bit=cfg.load_in_8bit and cfg.adapter is not None,
torch_dtype=torch_dtype,
device_map=cfg.device_map,
trust_remote_code=True if cfg.trust_remote_code is True else False,
)
else:
config = AutoConfig.from_pretrained(
base_model,
trust_remote_code=True if cfg.trust_remote_code is True else False,
)
model = AutoModelForCausalLM.from_pretrained(
base_model,
config=config,
load_in_8bit=cfg.load_in_8bit and cfg.adapter is not None,
torch_dtype=torch_dtype,
device_map=cfg.device_map,
trust_remote_code=True if cfg.trust_remote_code is True else False,
)
except Exception as e:
logging.error(
"Exception raised attempting to load model, retrying with AutoModelForCausalLM"
)
logging.exception(e)
model = AutoModelForCausalLM.from_pretrained(
base_model,
load_in_8bit=cfg.load_in_8bit and cfg.adapter is not None,
torch_dtype=torch_dtype,
device_map=cfg.device_map,
trust_remote_code=True if cfg.trust_remote_code is True else False,
)
if not tokenizer:
try:
if is_llama_derived_model and "LlamaTokenizer" in globals():
tokenizer = LlamaTokenizer.from_pretrained(model)
else:
tokenizer = getattr(transformers, tokenizer_type).from_pretrained(model)
except:
tokenizer = AutoTokenizer.from_pretrained(base_model_config)
logging.debug(f"EOS: {tokenizer.eos_token_id} / {tokenizer.eos_token}")
logging.debug(f"BOS: {tokenizer.bos_token_id} / {tokenizer.bos_token}")
logging.debug(f"PAD: {tokenizer.pad_token_id} / {tokenizer.pad_token}")
logging.debug(f"UNK: {tokenizer.unk_token_id} / {tokenizer.unk_token}")
if tokenizer.__class__.__name__ in ["LlamaTokenizer", "LlamaTokenizerFast"]:
tokenizer.pad_token = LLAMA_DEFAULT_PAD_TOKEN
if tokenizer.__class__.__name__ == "GPTNeoXTokenizerFast":
tokenizer.add_special_tokens({"pad_token": "[PAD]"})
os.environ["TOKENIZERS_PARALLELISM"] = "false"
if cfg.tokens:
for k, v in cfg.tokens.items():
tokenizer.add_special_tokens({k: v})
if cfg.adapter and load_in_8bit and not cfg.load_4bit:
logging.info("converting PEFT model w/ prepare_model_for_int8_training")
model = prepare_model_for_int8_training(model)
model, lora_config = load_adapter(model, cfg, adapter)
if cfg.ddp and not load_in_8bit:
model.to(f"cuda:{cfg.local_rank}")
if cfg.load_4bit:
# Scales to half
logging.info("Fitting 4bit scales and zeros to half")
for n, m in model.named_modules():
if "Autograd4bitQuantLinear" in str(type(m)) or "Linear4bitLt" in str(
type(m)
):
if hasattr(m, "is_v1_model") and m.is_v1_model:
m.zeros = m.zeros.half()
m.scales = m.scales.half()
m.bias = m.bias.half()
if torch.cuda.device_count() > 1 and int(os.getenv("WORLD_SIZE", "1")) > 1:
model.is_parallelizable = True
model.model_parallel = True
requires_grad = []
for name, param in model.named_parameters(recurse=True):
if param.requires_grad:
requires_grad.append(f"{name}: {param.requires_grad}")
if len(requires_grad) == 0:
logging.warning("there are no parameters that require gradient updates")
# TODO resume_from_checkpoint handling
return model, tokenizer, lora_config
def load_adapter(model, cfg, adapter):
# type: (PreTrainedModel, AttrDefault, Optional[str]) -> Tuple[PreTrainedModel, Optional[PeftConfig]]
if adapter is None:
return model, None
if adapter == "lora":
return load_lora(model, cfg)
if adapter == "llama-adapter":
return load_llama_adapter(model, cfg)
raise NotImplementedError(f"{adapter} peft adapter not available")
def load_llama_adapter(model, cfg):
# type: (PreTrainedModel, AttrDefault) -> Tuple[PreTrainedModel, Optional[PeftConfig]]
from peft import (
AdaptionPromptConfig,
get_peft_model,
PeftModel,
)
peft_config = AdaptionPromptConfig(
adapter_layers=cfg.peft_adapter.layers, # layers (L)
adapter_len=cfg.peft_adapter.len, # prompt length (K)
task_type="CAUSAL_LM",
)
if cfg.peft_model_dir:
model = PeftModel.from_pretrained(
model,
cfg.lora_model_dir,
device_map=cfg.device_map,
torch_dtype=torch.float16,
)
else:
model = get_peft_model(model, peft_config)
model.print_trainable_parameters()
return model, peft_config
def load_lora(model, cfg):
# type: (PreTrainedModel, AttrDefault) -> Tuple[PreTrainedModel, Optional[PeftConfig]]
from peft import (
LoraConfig,
get_peft_model,
PeftModel,
)
lora_config = None
lora_config = LoraConfig(
r=cfg.lora_r,
lora_alpha=cfg.lora_alpha,
target_modules=cfg.lora_target_modules,
lora_dropout=cfg.lora_dropout,
fan_in_fan_out=cfg.lora_fan_in_fan_out,
bias="none",
task_type="CAUSAL_LM",
)
if cfg.lora_model_dir:
model = PeftModel.from_pretrained(
model,
cfg.lora_model_dir,
device_map=cfg.device_map,
torch_dtype=torch.float16,
)
else:
model = get_peft_model(model, lora_config)
model.print_trainable_parameters()
return model, lora_config