qwerrwe / src /axolotl /monkeypatch /llama_expand_mask.py
winglian's picture
Attention mask and position id fixes for packing (#285)
2bb0b78 unverified
raw
history blame
1.92 kB
"""
expands the binary attention mask per 3.2.2 of https://arxiv.org/pdf/2107.02027.pdf
"""
from typing import Optional
import torch
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
"""
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
This expansion handles packed sequences so that sequences share the same attention mask integer value
when they attend to each other within that sequence.
This expansion transforms the mask to lower triangular form to prevent future peeking.
"""
bsz, src_len = mask.size()
tgt_len = tgt_len if tgt_len is not None else src_len
mask = mask.unsqueeze(1).unsqueeze(2)
mask = mask.expand(bsz, 1, tgt_len, src_len)
# Create a binary mask from the original mask where zeros remain zeros and all other values are set to one
binary_mask = torch.where(
mask != 0,
torch.tensor(1).to(dtype),
torch.tensor(0).to(dtype),
)
# Create a block-diagonal mask.
# we multiply by the binary mask so that 0's in the original mask are correctly excluded
zero_one_mask = torch.eq(mask, mask.transpose(-1, -2)).int() * binary_mask
# Now let's create a lower triangular mask of ones that will zero out the upper triangular part
lower_triangular_ones = torch.tril(torch.ones((tgt_len, src_len), dtype=dtype)).to(
mask.device
)
# Use the lower triangular mask to zero out the upper triangular part of the zero_one_mask
masked_zero_one_mask = zero_one_mask * lower_triangular_ones
inverted_mask = 1.0 - masked_zero_one_mask
return inverted_mask.masked_fill(
inverted_mask.to(torch.bool), torch.finfo(dtype).min
)
def hijack_expand_mask():
import transformers
transformers.models.llama.modeling_llama._expand_mask = ( # pylint: disable=protected-access
_expand_mask
)