Fixed pre-commit problems, fixed small bug in logging_config to handle LOG_LEVEL env var
b1f4f7a
# pylint: skip-file | |
# coding=utf-8 | |
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved. | |
# | |
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX | |
# and OPT implementations in this library. It has been modified from its | |
# original forms to accommodate minor architectural differences compared | |
# to GPT-NeoX and OPT used by the Meta AI team that trained the model. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
PyTorch LLaMA model. | |
Taken from https://github.com/epfml/landmark-attention/blob/main/llama/llama_mem.py and modified. | |
""" | |
import math | |
from typing import List, Optional, Tuple, Union | |
import torch | |
import torch.utils.checkpoint | |
from torch import nn | |
from torch.nn import CrossEntropyLoss | |
from transformers import LlamaTokenizer | |
from transformers.modeling_outputs import ( | |
BaseModelOutputWithPast, | |
CausalLMOutputWithPast, | |
) | |
from transformers.models.llama.configuration_llama import LlamaConfig | |
from transformers.models.llama.modeling_llama import ( | |
LLAMA_INPUTS_DOCSTRING, | |
LLAMA_START_DOCSTRING, | |
LlamaMLP, | |
LlamaPreTrainedModel, | |
LlamaRMSNorm, | |
LlamaRotaryEmbedding, | |
_expand_mask, | |
_make_causal_mask, | |
rotate_half, | |
) | |
from transformers.utils import ( | |
add_start_docstrings, | |
add_start_docstrings_to_model_forward, | |
logging, | |
replace_return_docstrings, | |
) | |
LOG = logging.getLogger("axolotl") | |
_CONFIG_FOR_DOC = "LlamaConfig" | |
MEM_TOKEN = "<landmark>" # nosec | |
def apply_rotary_pos_emb(q, k, cos, sin, position_ids): | |
# The first two dimensions of cos and sin are always 1, so we can `squeeze` them. | |
cos = cos.squeeze(1).squeeze(0) # [seq_len, dim] | |
sin = sin.squeeze(1).squeeze(0) # [seq_len, dim] | |
cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim] | |
sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim] | |
if q is None: | |
q_embed = None | |
else: | |
q_embed = (q * cos) + (rotate_half(q) * sin) | |
k_embed = (k * cos) + (rotate_half(k) * sin) | |
return q_embed, k_embed | |
class LandmarkGroupedSoftmaxFunction(torch.autograd.Function): | |
""" | |
Landmark grouped softmax function. | |
""" | |
# Note that forward, setup_context, and backward are @staticmethods | |
def forward(ctx, x, dim, mem_cnt, resp_mem_idx): | |
new_shape = list(x.shape) | |
new_shape[dim] = mem_cnt # max_mem_cnt.item() | |
max_by_group = x.new_zeros((*new_shape,)) | |
max_by_group.scatter_reduce_( | |
src=x, index=resp_mem_idx, dim=dim, reduce="amax", include_self=False | |
) | |
maxes = torch.gather(max_by_group, dim, resp_mem_idx) | |
# x_exp = torch.exp(x - torch.where(torch.isinf(maxes), 0, maxes)) | |
x_exp = torch.exp((x - maxes).to(torch.float32)) | |
cumsum_by_group = torch.zeros_like(max_by_group, dtype=x_exp.dtype) | |
cumsum_by_group.scatter_add_( | |
dim, | |
resp_mem_idx, | |
x_exp, | |
) | |
denom = torch.gather(cumsum_by_group, dim, resp_mem_idx) | |
# probs = torch.where(denom < 0.5, 0, x_exp / denom) | |
probs = x_exp / denom | |
ctx.mem_cnt = mem_cnt | |
ctx.dim = dim | |
ctx.save_for_backward(resp_mem_idx, probs) | |
return probs | |
def backward(ctx, grad_probs): | |
mem_cnt = ctx.mem_cnt | |
dim = ctx.dim | |
resp_mem_idx, probs = ctx.saved_tensors | |
grad_x = grad_dim = grad_mem_cnt = grad_resp_mem_idx = None | |
if ctx.needs_input_grad[0] or ctx.needs_input_grad[4]: | |
grad_pair = grad_probs * probs | |
new_shape = list(probs.shape) | |
new_shape[dim] = mem_cnt # max_mem_cnt.item() | |
cumsum_by_group = grad_pair.new_zeros((*new_shape,)) | |
cumsum_by_group.scatter_add_(dim, resp_mem_idx, grad_pair) | |
if ctx.needs_input_grad[0]: | |
grad_sum = torch.gather(cumsum_by_group, dim, resp_mem_idx) | |
grad_x = grad_pair - probs * grad_sum | |
assert not ctx.needs_input_grad[1] | |
assert not ctx.needs_input_grad[2] | |
assert not ctx.needs_input_grad[3] | |
return grad_x, grad_dim, grad_mem_cnt, grad_resp_mem_idx | |
def landmark_grouped_softmax(x, dim, is_mem, last_section_mask): | |
last_and_rest_mask = last_section_mask # | mask | |
full_access_mask = is_mem | last_and_rest_mask | |
max_mem_cnt = 16 | |
mem_group_idx = torch.cumsum(is_mem, dim=dim) | |
mem_bucket_id = max_mem_cnt - 1 | |
resp_mem_idx = torch.where( | |
last_and_rest_mask, | |
max_mem_cnt - 1, | |
torch.where(is_mem, mem_bucket_id, mem_group_idx), | |
) | |
probs = LandmarkGroupedSoftmaxFunction.apply(x, dim, max_mem_cnt, resp_mem_idx) | |
new_shape = list(x.shape) | |
new_shape[dim] = max_mem_cnt | |
group_prob = probs.new_zeros((*new_shape,)) | |
group_prob.scatter_( | |
dim, torch.where(is_mem, mem_group_idx - 1, max_mem_cnt - 1), probs | |
) | |
probs = probs.mul( | |
torch.where( | |
full_access_mask, | |
last_section_mask, | |
torch.gather(group_prob, dim, resp_mem_idx), | |
) | |
) | |
return probs | |
class LlamaAttention(nn.Module): | |
"""Multi-headed attention from 'Attention Is All You Need' paper""" | |
def __init__(self, config: LlamaConfig): | |
super().__init__() | |
self.config = config | |
self.hidden_size = config.hidden_size | |
self.num_heads = config.num_attention_heads | |
self.head_dim = self.hidden_size // self.num_heads | |
self.max_position_embeddings = config.max_position_embeddings | |
if (self.head_dim * self.num_heads) != self.hidden_size: | |
raise ValueError( | |
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" | |
f" and `num_heads`: {self.num_heads})." | |
) | |
self.q_proj = nn.Linear( | |
self.hidden_size, self.num_heads * self.head_dim, bias=False | |
) | |
self.k_proj = nn.Linear( | |
self.hidden_size, self.num_heads * self.head_dim, bias=False | |
) | |
self.v_proj = nn.Linear( | |
self.hidden_size, self.num_heads * self.head_dim, bias=False | |
) | |
self.o_proj = nn.Linear( | |
self.num_heads * self.head_dim, self.hidden_size, bias=False | |
) | |
self.rotary_emb = LlamaRotaryEmbedding( | |
self.head_dim, max_position_embeddings=self.max_position_embeddings | |
) | |
self.mem_freq = None | |
self.top_k = None | |
self.max_cache_size = None | |
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): | |
return ( | |
tensor.view(bsz, seq_len, self.num_heads, self.head_dim) | |
.transpose(1, 2) | |
.contiguous() | |
) | |
def set_mem_cache_args(self, mem_freq, top_k, max_cache_size): | |
self.mem_freq = mem_freq | |
self.top_k = top_k | |
self.max_cache_size = max_cache_size | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_value: Optional[Tuple[torch.Tensor]] = None, | |
output_attentions: bool = False, | |
use_cache: bool = False, | |
is_mem: Optional[torch.Tensor] = None, | |
last_section_mask: Optional[torch.Tensor] = None, | |
offload_cache_to_cpu: bool = False, | |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
bsz, q_len, _ = hidden_states.size() | |
query_states = ( | |
self.q_proj(hidden_states) | |
.view(bsz, q_len, self.num_heads, self.head_dim) | |
.transpose(1, 2) | |
) | |
key_states = ( | |
self.k_proj(hidden_states) | |
.view(bsz, q_len, self.num_heads, self.head_dim) | |
.transpose(1, 2) | |
) | |
value_states = ( | |
self.v_proj(hidden_states) | |
.view(bsz, q_len, self.num_heads, self.head_dim) | |
.transpose(1, 2) | |
) | |
kv_seq_len = key_states.shape[-2] | |
if past_key_value is not None: | |
kv_seq_len += past_key_value[0].shape[-2] | |
if len(past_key_value) > 2: | |
kv_seq_len += past_key_value[3].shape[2] * past_key_value[3].shape[3] | |
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) | |
key_states_before_pos = key_states | |
query_states, key_states = apply_rotary_pos_emb( | |
query_states, key_states, cos, sin, position_ids | |
) | |
# [bsz, nh, t, hd] | |
attn_prefix = None | |
if past_key_value is not None: | |
# reuse k, v, self_attention | |
if self.mem_freq is None: | |
cache_len = past_key_value[0].shape[2] | |
if self.max_cache_size is not None: | |
cache_len = min(cache_len, self.max_cache_size) | |
if is_mem is not None: | |
is_mem = torch.cat( | |
(is_mem.new_zeros((1, 1, q_len, cache_len)), is_mem), dim=-1 | |
) | |
last_section_mask = torch.cat( | |
( | |
last_section_mask.new_ones((1, 1, q_len, cache_len)), | |
last_section_mask, | |
), | |
dim=-1, | |
) | |
past_key_states = torch.cat([past_key_value[0], key_states], dim=2) | |
past_value_states = torch.cat([past_key_value[1], value_states], dim=2) | |
key_states = past_key_states[:, :, -(q_len + cache_len) :] | |
value_states = past_value_states[:, :, -(q_len + cache_len) :] | |
expected_att_size = (bsz, self.num_heads, q_len, cache_len + q_len) | |
else: | |
orig_value_states = value_states | |
incomplete_len = past_key_value[0].shape[2] % (self.mem_freq + 1) | |
full_len = past_key_value[0].shape[2] - incomplete_len | |
past_key_mem, past_key_incomplete = torch.split( | |
past_key_value[0], (full_len, incomplete_len), dim=2 | |
) | |
past_value_mem, past_value_incomplete = torch.split( | |
past_key_value[1], (full_len, incomplete_len), dim=2 | |
) | |
if offload_cache_to_cpu: | |
past_key_value = ( | |
past_key_incomplete, | |
past_value_incomplete, | |
*past_key_value[2:], | |
) | |
if incomplete_len > 0: | |
assert q_len + incomplete_len <= (self.mem_freq + 1) | |
is_mem = torch.cat( | |
(is_mem.new_zeros((1, 1, q_len, incomplete_len)), is_mem), dim=-1 | |
) | |
last_section_mask = torch.cat( | |
( | |
last_section_mask.new_ones((1, 1, q_len, incomplete_len)), | |
last_section_mask, | |
), | |
dim=-1, | |
) | |
if len(past_key_value) > 2: | |
full_len += past_key_value[3].shape[2] * past_key_value[3].shape[3] | |
past_key_incomplete_pos = torch.arange( | |
full_len, | |
full_len + incomplete_len, | |
dtype=torch.long, | |
device=position_ids.device, | |
).unsqueeze(0) | |
_, past_key_incomplete = apply_rotary_pos_emb( | |
None, past_key_incomplete, cos, sin, past_key_incomplete_pos | |
) | |
key_states = torch.cat((past_key_incomplete, key_states), dim=2) | |
value_states = torch.cat((past_value_incomplete, value_states), dim=2) | |
past_key_mem = past_key_mem.view( | |
bsz, self.num_heads, -1, self.mem_freq + 1, self.head_dim | |
) | |
past_value_mem = past_value_mem.view( | |
bsz, self.num_heads, -1, self.mem_freq + 1, self.head_dim | |
) | |
if len(past_key_value) > 2: | |
mem_key_nopos = torch.cat( | |
( | |
past_key_value[2], | |
past_key_mem.select(dim=3, index=self.mem_freq), | |
), | |
dim=2, | |
) | |
past_key_mem_offload = past_key_value[3] | |
past_key_mem = torch.cat( | |
( | |
past_key_mem_offload, | |
past_key_mem.to(past_key_mem_offload.device), | |
), | |
dim=2, | |
) | |
past_value_mem = torch.cat( | |
( | |
past_key_value[4], | |
past_value_mem.to(past_key_mem_offload.device), | |
), | |
dim=2, | |
) | |
else: | |
mem_key_nopos = past_key_mem.select(dim=3, index=self.mem_freq) | |
num_mems = past_key_mem.shape[2] | |
top_k = min(self.top_k, num_mems) | |
prefix_len = full_len - (top_k + 1) * (self.mem_freq + 1) | |
mem_indices = torch.cat( | |
( | |
position_ids.new_zeros((max(0, num_mems - top_k),)), | |
torch.arange( | |
1, | |
top_k + 1, | |
device=query_states.device, | |
dtype=position_ids.dtype, | |
), | |
), | |
dim=0, | |
) | |
mem_pos = (mem_indices * (self.mem_freq + 1) + self.mem_freq).unsqueeze( | |
0 | |
).expand(bsz, -1) + prefix_len | |
_, mem_key = apply_rotary_pos_emb( | |
None, mem_key_nopos, cos, sin, mem_pos | |
) | |
mem_attn_weights = torch.matmul( | |
query_states, mem_key.transpose(2, 3) | |
) / math.sqrt(self.head_dim) | |
if offload_cache_to_cpu: | |
aggregate = "max_over_tokens" | |
else: | |
aggregate = None | |
if aggregate == "max_over_tokens": | |
token_retrievers = 1 | |
head_retrievers = self.num_heads | |
mem_attn_weights = torch.nn.functional.softmax( | |
mem_attn_weights, dim=-1 | |
) | |
mem_attn_weights = mem_attn_weights.amax(dim=2, keepdim=True) | |
elif aggregate is None: | |
token_retrievers = q_len | |
head_retrievers = self.num_heads | |
else: | |
raise NotImplementedError() | |
mem_selected_idx = ( | |
mem_attn_weights.topk(dim=-1, k=top_k)[1] | |
.sort(dim=-1)[0] | |
.view(bsz, head_retrievers, token_retrievers, top_k) | |
) | |
selected_indices = torch.arange( | |
0, | |
top_k * (self.mem_freq + 1), | |
device=query_states.device, | |
dtype=position_ids.dtype, | |
) | |
selected_indices = torch.where( | |
mem_selected_idx >= num_mems - top_k, self.mem_freq + 1, 0 | |
).unsqueeze(-1) + selected_indices.view( | |
1, 1, 1, top_k, self.mem_freq + 1 | |
) | |
selected_indices = ( | |
selected_indices.view( | |
bsz, head_retrievers, token_retrievers, -1 | |
).expand(bsz, self.num_heads, q_len, -1) | |
+ prefix_len | |
) | |
mem_selected_idx = mem_selected_idx.to(past_key_mem.device) | |
mem_selected_idx = mem_selected_idx.view( | |
bsz, self.num_heads, token_retrievers, top_k, 1, 1 | |
).expand( | |
bsz, | |
self.num_heads, | |
token_retrievers, | |
top_k, | |
self.mem_freq + 1, | |
self.head_dim, | |
) | |
selected_keys = past_key_mem.unsqueeze(2).expand( | |
bsz, | |
self.num_heads, | |
token_retrievers, | |
-1, | |
self.mem_freq + 1, | |
self.head_dim, | |
) | |
selected_keys = selected_keys.take_along_dim( | |
mem_selected_idx, dim=3 | |
).to(query_states.device) | |
selected_values = ( | |
past_value_mem.unsqueeze(2) | |
.expand( | |
bsz, | |
self.num_heads, | |
token_retrievers, | |
-1, | |
self.mem_freq + 1, | |
self.head_dim, | |
) | |
.take_along_dim(mem_selected_idx, dim=3) | |
.to(query_states.device) | |
) | |
selected_keys = selected_keys.view( | |
bsz, self.num_heads, token_retrievers, -1, self.head_dim | |
).expand(bsz, self.num_heads, q_len, -1, self.head_dim) | |
selected_keys = apply_rotary_pos_emb( | |
None, selected_keys.unsqueeze(1), cos, sin, selected_indices | |
)[1].squeeze(1) | |
selected_values = selected_values.view( | |
bsz, self.num_heads, token_retrievers, -1, self.head_dim | |
).expand(bsz, self.num_heads, q_len, -1, self.head_dim) | |
attn_prefix = torch.matmul( | |
query_states.unsqueeze(3), selected_keys.transpose(3, 4) | |
).squeeze(3) / math.sqrt(self.head_dim) | |
is_mem_prefix = ( | |
torch.cat( | |
(is_mem.new_zeros((self.mem_freq,)), is_mem.new_ones((1,))) | |
) | |
.unsqueeze(0) | |
.repeat((top_k, 1)) | |
) | |
is_mem_prefix = is_mem_prefix.view(1, 1, 1, -1).expand(1, 1, q_len, -1) | |
is_mem = torch.cat((is_mem_prefix, is_mem), dim=-1) | |
last_section_mask = torch.cat( | |
( | |
last_section_mask.new_zeros( | |
(1, 1, q_len, top_k * (self.mem_freq + 1)) | |
), | |
last_section_mask, | |
), | |
dim=-1, | |
) | |
expected_att_size = (bsz, self.num_heads, q_len, q_len + incomplete_len) | |
past_key_states = torch.cat( | |
[past_key_value[0], key_states_before_pos], dim=2 | |
) | |
past_value_states = torch.cat( | |
[past_key_value[1], orig_value_states], dim=2 | |
) | |
if offload_cache_to_cpu: | |
past_key_value = ( | |
( | |
past_key_states, | |
past_value_states, | |
mem_key_nopos, | |
past_key_mem.to("cpu"), | |
past_value_mem.to("cpu"), | |
*past_key_value[5:], | |
) | |
if use_cache | |
else None | |
) | |
else: | |
past_key_value = ( | |
(past_key_states, past_value_states) if use_cache else None | |
) | |
else: | |
if self.mem_freq is None: | |
past_key_states = key_states | |
else: | |
past_key_states = key_states_before_pos | |
past_value_states = value_states | |
expected_att_size = (bsz, self.num_heads, q_len, kv_seq_len) | |
past_key_value = (past_key_states, past_value_states) if use_cache else None | |
attn_weights = torch.matmul( | |
query_states, key_states.transpose(2, 3) | |
) / math.sqrt(self.head_dim) | |
if attn_weights.size() != expected_att_size: | |
raise ValueError( | |
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is" | |
f" {attn_weights.size()}" | |
) | |
if attention_mask is not None: | |
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): | |
raise ValueError( | |
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" | |
) | |
attn_weights = attn_weights + attention_mask[..., -attn_weights.shape[-1] :] | |
attn_weights = torch.max( | |
attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min) | |
) | |
if attn_prefix is not None: | |
attn_weights = torch.cat((attn_prefix, attn_weights), dim=-1) | |
# upcast attention to fp32 | |
if is_mem is None: | |
raise ValueError("Don't use this without landmarks") | |
attn_weights = landmark_grouped_softmax( | |
attn_weights, | |
dim=-1, | |
is_mem=is_mem.expand(-1, self.num_heads, -1, -1), | |
last_section_mask=last_section_mask, | |
).to(query_states.dtype) | |
if attn_prefix is not None: | |
attn_prefix, attn_weights = torch.split( | |
attn_weights, | |
(attn_prefix.shape[-1], attn_weights.shape[-1] - attn_prefix.shape[-1]), | |
dim=-1, | |
) | |
attn_output = torch.matmul(attn_weights, value_states) | |
if attn_prefix is not None: | |
attn_output += torch.matmul( | |
attn_prefix.unsqueeze(3), selected_values | |
).squeeze(3) | |
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): | |
raise ValueError( | |
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" | |
f" {attn_output.size()}" | |
) | |
attn_output = attn_output.transpose(1, 2) | |
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) | |
attn_output = self.o_proj(attn_output) | |
if not output_attentions: | |
attn_weights = None | |
return attn_output, attn_weights, past_key_value | |
class LlamaDecoderLayer(nn.Module): | |
""" | |
Llama Decoder layer | |
""" | |
def __init__(self, config: LlamaConfig): | |
super().__init__() | |
self.hidden_size = config.hidden_size | |
self.self_attn = LlamaAttention(config=config) | |
self.mlp = LlamaMLP( | |
hidden_size=self.hidden_size, | |
intermediate_size=config.intermediate_size, | |
hidden_act=config.hidden_act, | |
) | |
self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) | |
self.post_attention_layernorm = LlamaRMSNorm( | |
config.hidden_size, eps=config.rms_norm_eps | |
) | |
def set_mem_cache_args(self, mem_freq, top_k, max_cache_size): | |
self.self_attn.set_mem_cache_args(mem_freq, top_k, max_cache_size) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_value: Optional[Tuple[torch.Tensor]] = None, | |
output_attentions: Optional[bool] = False, | |
use_cache: Optional[bool] = False, | |
is_mem: Optional[torch.Tensor] = None, | |
last_section_mask: Optional[torch.Tensor] = None, | |
offload_cache_to_cpu: bool = False, | |
) -> Tuple[ | |
torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]] | |
]: | |
""" | |
Args: | |
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` | |
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size | |
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under | |
returned tensors for more detail. | |
use_cache (`bool`, *optional*): | |
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding | |
(see `past_key_values`). | |
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states | |
""" | |
residual = hidden_states | |
hidden_states = self.input_layernorm(hidden_states) | |
# Self Attention | |
hidden_states, self_attn_weights, present_key_value = self.self_attn( | |
hidden_states=hidden_states, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
past_key_value=past_key_value, | |
output_attentions=output_attentions, | |
use_cache=use_cache, | |
is_mem=is_mem, | |
last_section_mask=last_section_mask, | |
offload_cache_to_cpu=offload_cache_to_cpu, | |
) | |
hidden_states = residual + hidden_states | |
# Fully Connected | |
residual = hidden_states | |
hidden_states = self.post_attention_layernorm(hidden_states) | |
hidden_states = self.mlp(hidden_states) | |
hidden_states = residual + hidden_states | |
outputs = (hidden_states,) | |
if output_attentions: | |
outputs += (self_attn_weights,) | |
if use_cache: | |
outputs += (present_key_value,) | |
return outputs | |
class LlamaModel(LlamaPreTrainedModel): | |
""" | |
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LlamaDecoderLayer`] | |
Args: | |
config: LlamaConfig | |
""" | |
def __init__(self, config: LlamaConfig): | |
super().__init__(config) | |
self.padding_idx = config.pad_token_id | |
self.vocab_size = config.vocab_size | |
self.embed_tokens = nn.Embedding( | |
config.vocab_size, config.hidden_size, self.padding_idx | |
) | |
self.layers = nn.ModuleList( | |
[LlamaDecoderLayer(config) for _ in range(config.num_hidden_layers)] | |
) | |
self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) | |
self.mem_id = None | |
self.gradient_checkpointing = False | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_input_embeddings(self): | |
return self.embed_tokens | |
def set_input_embeddings(self, value): | |
self.embed_tokens = value | |
def set_mem_id(self, mem_id): | |
self.mem_id = mem_id | |
def set_mem_cache_args(self, mem_freq, top_k, max_cache_size): | |
for layer in self.layers: | |
layer.set_mem_cache_args(mem_freq, top_k, max_cache_size) | |
# Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask | |
def _prepare_decoder_attention_mask( | |
self, attention_mask, input_shape, inputs_embeds, past_key_values_length | |
): | |
# create causal mask | |
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] | |
combined_attention_mask = None | |
if input_shape[-1] > 1: | |
combined_attention_mask = _make_causal_mask( | |
input_shape, | |
inputs_embeds.dtype, | |
device=inputs_embeds.device, | |
past_key_values_length=past_key_values_length, | |
) | |
if attention_mask is not None: | |
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] | |
expanded_attn_mask = _expand_mask( | |
attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1] | |
).to(inputs_embeds.device) | |
combined_attention_mask = ( | |
expanded_attn_mask | |
if combined_attention_mask is None | |
else expanded_attn_mask + combined_attention_mask | |
) | |
return combined_attention_mask | |
def forward( | |
self, | |
input_ids: torch.LongTensor = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_values: Optional[List[torch.FloatTensor]] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
offload_cache_to_cpu: Optional[bool] = None, | |
) -> Union[Tuple, BaseModelOutputWithPast]: | |
output_attentions = ( | |
output_attentions | |
if output_attentions is not None | |
else self.config.output_attentions | |
) | |
output_hidden_states = ( | |
output_hidden_states | |
if output_hidden_states is not None | |
else self.config.output_hidden_states | |
) | |
use_cache = use_cache if use_cache is not None else self.config.use_cache | |
return_dict = ( | |
return_dict if return_dict is not None else self.config.use_return_dict | |
) | |
# retrieve input_ids and inputs_embeds | |
is_mem = None | |
if input_ids is not None and inputs_embeds is not None: | |
raise ValueError( | |
"You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time" | |
) | |
elif input_ids is not None: | |
batch_size, seq_length = input_ids.shape | |
if self.mem_id is not None: | |
with torch.no_grad(): | |
is_mem = input_ids == self.mem_id | |
elif inputs_embeds is not None: | |
batch_size, seq_length, _ = inputs_embeds.shape | |
if self.mem_id is not None: | |
raise NotImplementedError | |
else: | |
raise ValueError( | |
"You have to specify either decoder_input_ids or decoder_inputs_embeds" | |
) | |
seq_length_with_past = seq_length | |
past_key_values_length = 0 | |
if past_key_values is not None: | |
if is_mem is not None: | |
pass | |
# raise NotImplementedError | |
past_key_values_length = past_key_values[0][0].shape[2] | |
if len(past_key_values[0]) > 2: | |
past_key_values_length += ( | |
past_key_values[0][3].shape[2] * past_key_values[0][3].shape[3] | |
) | |
seq_length_with_past = seq_length_with_past + past_key_values_length | |
if position_ids is None: | |
device = input_ids.device if input_ids is not None else inputs_embeds.device | |
position_ids = torch.arange( | |
past_key_values_length, | |
seq_length + past_key_values_length, | |
dtype=torch.long, | |
device=device, | |
) | |
position_ids = position_ids.unsqueeze(0).view(-1, seq_length) | |
else: | |
position_ids = position_ids.view(-1, seq_length).long() | |
if inputs_embeds is None: | |
inputs_embeds = self.embed_tokens(input_ids) | |
# embed positions | |
if attention_mask is None: | |
attention_mask = torch.ones( | |
(batch_size, seq_length_with_past), | |
dtype=torch.bool, | |
device=inputs_embeds.device, | |
) | |
attention_mask = self._prepare_decoder_attention_mask( | |
attention_mask, | |
(batch_size, seq_length), | |
inputs_embeds, | |
past_key_values_length, | |
) | |
last_section_mask = None | |
if is_mem is not None: | |
is_mem = is_mem.unsqueeze(1).unsqueeze(2) | |
current_len = input_ids.shape[1] | |
mem_ids = torch.where( | |
attention_mask[..., -current_len:] < -1, | |
0, | |
torch.cumsum(is_mem, -1) - is_mem.int(), | |
) | |
last_section_mask = torch.amax(mem_ids, -1, keepdim=True) == mem_ids | |
attention_mask[..., -current_len:].masked_fill_( | |
last_section_mask & is_mem, | |
torch.tensor( | |
torch.finfo(inputs_embeds.dtype).min, device=inputs_embeds.device | |
), | |
) | |
last_section_mask.logical_and_(attention_mask[..., -current_len:] > -1) | |
is_mem = is_mem.logical_and(attention_mask[..., -current_len:] > -1) | |
hidden_states = inputs_embeds | |
if self.gradient_checkpointing and self.training: | |
if use_cache: | |
LOG.warning_once( | |
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." | |
) | |
use_cache = False | |
# decoder layers | |
all_hidden_states = () if output_hidden_states else None | |
all_self_attns = () if output_attentions else None | |
next_decoder_cache = () if use_cache else None | |
for idx, decoder_layer in enumerate(self.layers): | |
if output_hidden_states: | |
all_hidden_states += (hidden_states,) | |
past_key_value = ( | |
past_key_values[idx] if past_key_values is not None else None | |
) | |
if self.gradient_checkpointing and self.training: | |
def create_custom_forward(module): | |
def custom_forward(*inputs): | |
# None for past_key_value | |
return module(*inputs) | |
return custom_forward | |
layer_outputs = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(decoder_layer), | |
hidden_states, | |
attention_mask, | |
position_ids, | |
None, | |
output_attentions, | |
None, | |
is_mem, | |
last_section_mask, | |
) | |
else: | |
layer_outputs = decoder_layer( | |
hidden_states, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
past_key_value=past_key_value, | |
output_attentions=output_attentions, | |
use_cache=use_cache, | |
is_mem=is_mem, | |
last_section_mask=last_section_mask, | |
offload_cache_to_cpu=offload_cache_to_cpu, | |
) | |
hidden_states = layer_outputs[0] | |
if use_cache: | |
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],) | |
if output_attentions: | |
all_self_attns += (layer_outputs[1],) | |
hidden_states = self.norm(hidden_states) | |
# add hidden states from the last decoder layer | |
if output_hidden_states: | |
all_hidden_states += (hidden_states,) | |
next_cache = next_decoder_cache if use_cache else None | |
if not return_dict: | |
return tuple( | |
v | |
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] | |
if v is not None | |
) | |
return BaseModelOutputWithPast( | |
last_hidden_state=hidden_states, | |
past_key_values=next_cache, | |
hidden_states=all_hidden_states, | |
attentions=all_self_attns, | |
) | |
class LlamaForCausalLM(LlamaPreTrainedModel): | |
""" | |
Llama model with a causal language modeling head. | |
""" | |
def __init__(self, config): | |
super().__init__(config) | |
self.model = LlamaModel(config) | |
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) | |
self.mem_id = None | |
self.mem_freq = None | |
self.top_k = None | |
self.max_seq_len = None | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_input_embeddings(self): | |
return self.model.embed_tokens | |
def set_input_embeddings(self, value): | |
self.model.embed_tokens = value | |
def get_output_embeddings(self): | |
return self.lm_head | |
def set_output_embeddings(self, new_embeddings): | |
self.lm_head = new_embeddings | |
def set_decoder(self, decoder): | |
self.model = decoder | |
def get_decoder(self): | |
return self.model | |
def forward( | |
self, | |
input_ids: torch.LongTensor = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_values: Optional[List[torch.FloatTensor]] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
labels: Optional[torch.LongTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
offload_cache_to_cpu: Optional[bool] = None, | |
) -> Union[Tuple, CausalLMOutputWithPast]: | |
r""" | |
Args: | |
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., | |
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored | |
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. | |
Returns: | |
Example: | |
```python | |
>>> from transformers import AutoTokenizer, LlamaForCausalLM | |
>>> model = LlamaForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS) | |
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER) | |
>>> prompt = "Hey, are you consciours? Can you talk to me?" | |
>>> inputs = tokenizer(prompt, return_tensors="pt") | |
>>> # Generate | |
>>> generate_ids = model.generate(inputs.input_ids, max_length=30) | |
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] | |
"Hey, are you consciours? Can you talk to me?\nI'm not consciours, but I can talk to you." | |
```""" | |
output_attentions = ( | |
output_attentions | |
if output_attentions is not None | |
else self.config.output_attentions | |
) | |
output_hidden_states = ( | |
output_hidden_states | |
if output_hidden_states is not None | |
else self.config.output_hidden_states | |
) | |
return_dict = ( | |
return_dict if return_dict is not None else self.config.use_return_dict | |
) | |
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) | |
window_len = self.max_seq_len or input_ids.shape[1] | |
last_logits = None | |
for _, idx in enumerate(range(0, input_ids.shape[1], window_len)): | |
if idx >= 1: | |
if output_attentions or output_hidden_states: | |
raise NotImplementedError | |
if not use_cache: | |
raise NotImplementedError | |
outputs = self.model( | |
input_ids=input_ids[:, idx : idx + window_len], | |
attention_mask=attention_mask[ | |
:, : idx + window_len + attention_mask.shape[1] - input_ids.shape[1] | |
] | |
if attention_mask is not None | |
else None, | |
position_ids=position_ids[:, idx : idx + window_len] | |
if position_ids is not None | |
else None, | |
past_key_values=past_key_values, | |
inputs_embeds=inputs_embeds[:, idx : idx + window_len] | |
if inputs_embeds is not None | |
else None, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
offload_cache_to_cpu=offload_cache_to_cpu, | |
) | |
past_key_values = outputs.past_key_values | |
if last_logits is not None: | |
last_logits = torch.cat((last_logits, outputs[0]), dim=-2) | |
last_logits = outputs[0] | |
hidden_states = last_logits | |
logits = self.lm_head(hidden_states) | |
loss = None | |
if labels is not None: | |
# Shift so that tokens < n predict n | |
shift_logits = logits[..., :-1, :].contiguous() | |
shift_labels = labels[..., 1:].contiguous() | |
# Flatten the tokens | |
loss_fct = CrossEntropyLoss() | |
shift_logits = shift_logits.view(-1, self.config.vocab_size) | |
shift_labels = shift_labels.view(-1) | |
# Enable model parallelism | |
shift_labels = shift_labels.to(shift_logits.device) | |
loss = loss_fct(shift_logits, shift_labels) | |
if not return_dict: | |
output = (logits,) + outputs[1:] | |
return (loss,) + output if loss is not None else output | |
return CausalLMOutputWithPast( | |
loss=loss, | |
logits=logits, | |
past_key_values=outputs.past_key_values, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |
def set_mem_id(self, mem_id): | |
self.mem_id = mem_id | |
self.model.set_mem_id(mem_id) | |
def set_mem_cache_args(self, max_seq_len, mem_freq, top_k, max_cache_size): | |
self.mem_freq = mem_freq | |
self.top_k = top_k | |
self.max_seq_len = max_seq_len | |
if self.max_seq_len is not None: | |
assert self.max_seq_len % (self.mem_freq + 1) == 0 | |
self.model.set_mem_cache_args(mem_freq, top_k, max_cache_size) | |
def prepare_inputs_for_generation( | |
self, | |
input_ids, | |
past_key_values=None, | |
attention_mask=None, | |
inputs_embeds=None, | |
**kwargs, | |
): | |
total_len = input_ids.shape[1] | |
if past_key_values: | |
prev_len = input_ids.shape[1] - 1 | |
else: | |
prev_len = 0 | |
position_ids = kwargs.get("position_ids", None) | |
if self.mem_freq is not None: | |
if position_ids is not None: | |
raise NotImplementedError | |
# T = input_ids.shape[1] | |
prev_incomplete_len = prev_len % self.mem_freq | |
prev_complete_len = prev_len - prev_incomplete_len | |
incomplete_len = total_len % self.mem_freq | |
new_full_len = total_len - prev_complete_len - incomplete_len | |
prev_input, input_ids_with_mem, input_ids_without_mem = torch.split( | |
input_ids, (prev_complete_len, new_full_len, incomplete_len), dim=-1 | |
) | |
bsz, _ = input_ids.size() | |
input_ids_with_mem = input_ids_with_mem.view(bsz, -1, self.mem_freq) | |
input_ids_with_mem = torch.cat( | |
( | |
input_ids_with_mem, | |
input_ids_with_mem.new_full( | |
(bsz, input_ids_with_mem.shape[1], 1), self.mem_id | |
), | |
), | |
dim=-1, | |
).view(bsz, -1) | |
input_ids = torch.cat( | |
(prev_input, input_ids_with_mem, input_ids_without_mem), dim=-1 | |
) | |
if attention_mask is not None: | |
attention_mask_with_mem, attention_mask_without_mem = torch.split( | |
attention_mask, | |
(prev_complete_len + new_full_len, incomplete_len), | |
dim=-1, | |
) | |
attention_mask_with_mem = attention_mask_with_mem.view( | |
bsz, -1, self.mem_freq | |
) | |
attention_mask_with_mem = torch.cat( | |
( | |
attention_mask_with_mem, | |
attention_mask_with_mem.new_ones( | |
(bsz, attention_mask_with_mem.shape[1], 1) | |
), | |
), | |
dim=-1, | |
).view(bsz, -1) | |
attention_mask = torch.cat( | |
(attention_mask_with_mem, attention_mask_without_mem), dim=-1 | |
) | |
input_ids = input_ids[:, prev_len:] | |
if attention_mask is not None and position_ids is None: | |
# create position_ids on the fly for batch generation | |
position_ids = attention_mask.long().cumsum(-1) - 1 | |
position_ids.masked_fill_(attention_mask == 0, 1) | |
position_ids = position_ids[:, -input_ids.shape[1] :].unsqueeze(-1) | |
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step | |
if ( | |
inputs_embeds is not None | |
and past_key_values is None | |
and self.mem_freq is None | |
): | |
model_inputs = {"inputs_embeds": inputs_embeds} | |
else: | |
model_inputs = {"input_ids": input_ids} | |
model_inputs.update( | |
{ | |
"position_ids": position_ids, | |
"past_key_values": past_key_values, | |
"use_cache": kwargs.get("use_cache"), | |
"attention_mask": attention_mask, | |
"offload_cache_to_cpu": kwargs.get("offload_cache_to_cpu"), | |
} | |
) | |
return model_inputs | |
def _reorder_cache(past_key_values, beam_idx): | |
reordered_past = () | |
for layer_past in past_key_values: | |
reordered_past += ( | |
tuple( | |
past_state.index_select(0, beam_idx) for past_state in layer_past | |
), | |
) | |
return reordered_past | |
def add_mem_tokens(example, mem_freq, mem_id): | |
ids = example["input_ids"] | |
ret = [] | |
prev_idx = 0 | |
for t_idx in range(mem_freq, len(ids), mem_freq): | |
ret.extend(ids[prev_idx:t_idx]) | |
ret.append(mem_id) | |
prev_idx = t_idx | |
ret.extend(ids[prev_idx:]) | |
# drop attention_mask | |
return {"input_ids": ret} | |
def patch_llama_with_landmark_attn(): | |
import transformers | |
transformers.models.llama.modeling_llama.LlamaForCausalLM = LlamaForCausalLM | |
transformers.models.llama.modeling_llama.LlamaModel = LlamaModel | |
transformers.models.llama.modeling_llama.LlamaAttention = LlamaAttention | |
transformers.models.llama.modeling_llama.LlamaDecoderLayer = LlamaDecoderLayer | |
transformers.models.llama.modeling_llama.apply_rotary_pos_emb = apply_rotary_pos_emb | |
def set_model_mem_id(model: LlamaForCausalLM, tokenizer: LlamaTokenizer): | |
mem_id = tokenizer.convert_tokens_to_ids(MEM_TOKEN) | |
model.set_mem_id(mem_id) | |
def get_mem_id(tokenizer: LlamaTokenizer): | |
return tokenizer.convert_tokens_to_ids(MEM_TOKEN) | |