qwerrwe / src /axolotl /cli /__init__.py
winglian's picture
RL/DPO (#935)
f243c21
raw
history blame
14.8 kB
"""Prepare and train a model on a dataset. Can also infer from a model or merge lora"""
import importlib
import logging
import math
import os
import random
import sys
from pathlib import Path
from threading import Thread
from typing import Any, Dict, List, Optional, Union
import gradio as gr
import torch
import yaml
# add src to the pythonpath so we don't need to pip install this
from accelerate.commands.config import config_args
from art import text2art
from datasets import concatenate_datasets, load_dataset
from huggingface_hub import HfApi
from huggingface_hub.utils import LocalTokenNotFoundError
from transformers import GenerationConfig, TextIteratorStreamer, TextStreamer
from axolotl.common.cli import TrainerCliArgs, load_model_and_tokenizer
from axolotl.logging_config import configure_logging
from axolotl.train import TrainDatasetMeta
from axolotl.utils.config import normalize_config, validate_config
from axolotl.utils.data import prepare_dataset
from axolotl.utils.dict import DictDefault
from axolotl.utils.distributed import is_main_process
from axolotl.utils.models import load_tokenizer
from axolotl.utils.tokenization import check_dataset_labels
from axolotl.utils.trainer import prepare_optim_env
from axolotl.utils.wandb_ import setup_wandb_env_vars
project_root = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
src_dir = os.path.join(project_root, "src")
sys.path.insert(0, src_dir)
configure_logging()
LOG = logging.getLogger("axolotl.scripts")
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
def print_axolotl_text_art(suffix=None):
font = "nancyj"
ascii_text = " axolotl"
if suffix:
ascii_text += f" x {suffix}"
ascii_art = text2art(ascii_text, font=font)
if is_main_process():
print(ascii_art)
def get_multi_line_input() -> Optional[str]:
print("Give me an instruction (Ctrl + D to submit): ")
instruction = ""
for line in sys.stdin:
instruction += line # pylint: disable=consider-using-join
# instruction = pathlib.Path("/proc/self/fd/0").read_text()
return instruction
def do_merge_lora(
*,
cfg: DictDefault,
cli_args: TrainerCliArgs,
):
model, tokenizer = load_model_and_tokenizer(cfg=cfg, cli_args=cli_args)
safe_serialization = cfg.save_safetensors is True
LOG.info("running merge of LoRA with base model")
model = model.merge_and_unload()
model.to(dtype=cfg.torch_dtype)
if cfg.local_rank == 0:
LOG.info(f"saving merged model to: {str(Path(cfg.output_dir) / 'merged')}")
model.save_pretrained(
str(Path(cfg.output_dir) / "merged"),
safe_serialization=safe_serialization,
)
tokenizer.save_pretrained(str(Path(cfg.output_dir) / "merged"))
def do_inference(
*,
cfg: DictDefault,
cli_args: TrainerCliArgs,
):
model, tokenizer = load_model_and_tokenizer(cfg=cfg, cli_args=cli_args)
prompter = cli_args.prompter
default_tokens = {"unk_token": "<unk>", "bos_token": "<s>", "eos_token": "</s>"}
for token, symbol in default_tokens.items():
# If the token isn't already specified in the config, add it
if not (cfg.special_tokens and token in cfg.special_tokens):
tokenizer.add_special_tokens({token: symbol})
prompter_module = None
if prompter:
prompter_module = getattr(
importlib.import_module("axolotl.prompters"), prompter
)
model = model.to(cfg.device, dtype=cfg.torch_dtype)
while True:
print("=" * 80)
# support for multiline inputs
instruction = get_multi_line_input()
if not instruction:
return
if prompter_module:
prompt: str = next(
prompter_module().build_prompt(instruction=instruction.strip("\n"))
)
else:
prompt = instruction.strip()
batch = tokenizer(prompt, return_tensors="pt", add_special_tokens=True)
print("=" * 40)
model.eval()
with torch.no_grad():
generation_config = GenerationConfig(
repetition_penalty=1.1,
max_new_tokens=1024,
temperature=0.9,
top_p=0.95,
top_k=40,
bos_token_id=tokenizer.bos_token_id,
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.pad_token_id,
do_sample=True,
use_cache=True,
return_dict_in_generate=True,
output_attentions=False,
output_hidden_states=False,
output_scores=False,
)
streamer = TextStreamer(tokenizer)
generated = model.generate(
inputs=batch["input_ids"].to(cfg.device),
generation_config=generation_config,
streamer=streamer,
)
print("=" * 40)
print(tokenizer.decode(generated["sequences"].cpu().tolist()[0]))
def do_inference_gradio(
*,
cfg: DictDefault,
cli_args: TrainerCliArgs,
):
model, tokenizer = load_model_and_tokenizer(cfg=cfg, cli_args=cli_args)
prompter = cli_args.prompter
default_tokens = {"unk_token": "<unk>", "bos_token": "<s>", "eos_token": "</s>"}
for token, symbol in default_tokens.items():
# If the token isn't already specified in the config, add it
if not (cfg.special_tokens and token in cfg.special_tokens):
tokenizer.add_special_tokens({token: symbol})
prompter_module = None
if prompter:
prompter_module = getattr(
importlib.import_module("axolotl.prompters"), prompter
)
model = model.to(cfg.device, dtype=cfg.torch_dtype)
def generate(instruction):
if not instruction:
return
if prompter_module:
# pylint: disable=stop-iteration-return
prompt: str = next(
prompter_module().build_prompt(instruction=instruction.strip("\n"))
)
else:
prompt = instruction.strip()
batch = tokenizer(prompt, return_tensors="pt", add_special_tokens=True)
model.eval()
with torch.no_grad():
generation_config = GenerationConfig(
repetition_penalty=1.1,
max_new_tokens=1024,
temperature=0.9,
top_p=0.95,
top_k=40,
bos_token_id=tokenizer.bos_token_id,
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.pad_token_id,
do_sample=True,
use_cache=True,
return_dict_in_generate=True,
output_attentions=False,
output_hidden_states=False,
output_scores=False,
)
streamer = TextIteratorStreamer(tokenizer)
generation_kwargs = {
"inputs": batch["input_ids"].to(cfg.device),
"generation_config": generation_config,
"streamer": streamer,
}
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
all_text = ""
for new_text in streamer:
all_text += new_text
yield all_text
demo = gr.Interface(
fn=generate,
inputs="textbox",
outputs="text",
title=cfg.get("gradio_title", "Axolotl Gradio Interface"),
)
demo.queue().launch(show_api=False, share=True)
def choose_config(path: Path):
yaml_files = list(path.glob("*.yml"))
if not yaml_files:
raise ValueError(
"No YAML config files found in the specified directory. Are you using a .yml extension?"
)
if len(yaml_files) == 1:
print(f"Using default YAML file '{yaml_files[0]}'")
return yaml_files[0]
print("Choose a YAML file:")
for idx, file in enumerate(yaml_files):
print(f"{idx + 1}. {file}")
chosen_file = None
while chosen_file is None:
try:
choice = int(input("Enter the number of your choice: "))
if 1 <= choice <= len(yaml_files):
chosen_file = yaml_files[choice - 1]
else:
print("Invalid choice. Please choose a number from the list.")
except ValueError:
print("Invalid input. Please enter a number.")
return chosen_file
def check_not_in(list1: List[str], list2: Union[Dict[str, Any], List[str]]) -> bool:
return not any(el in list2 for el in list1)
def load_cfg(config: Path = Path("examples/"), **kwargs):
if Path(config).is_dir():
config = choose_config(config)
# load the config from the yaml file
with open(config, encoding="utf-8") as file:
cfg: DictDefault = DictDefault(yaml.safe_load(file))
cfg.axolotl_config_path = config
# if there are any options passed in the cli, if it is something that seems valid from the yaml,
# then overwrite the value
cfg_keys = cfg.keys()
for k, _ in kwargs.items():
# if not strict, allow writing to cfg even if it's not in the yml already
if k in cfg_keys or not cfg.strict:
# handle booleans
if isinstance(cfg[k], bool):
cfg[k] = bool(kwargs[k])
else:
cfg[k] = kwargs[k]
validate_config(cfg)
prepare_optim_env(cfg)
normalize_config(cfg)
setup_wandb_env_vars(cfg)
return cfg
def load_datasets(
*,
cfg: DictDefault,
cli_args: TrainerCliArgs,
) -> TrainDatasetMeta:
tokenizer = load_tokenizer(cfg)
train_dataset, eval_dataset, total_num_steps, prompters = prepare_dataset(
cfg, tokenizer
)
if cli_args.debug or cfg.debug:
LOG.info("check_dataset_labels...")
check_dataset_labels(
train_dataset.select(
[
random.randrange(0, len(train_dataset) - 1) # nosec
for _ in range(cli_args.debug_num_examples)
]
),
tokenizer,
num_examples=cli_args.debug_num_examples,
text_only=cli_args.debug_text_only,
)
LOG.info("printing prompters...")
for prompter in prompters:
LOG.info(prompter)
return TrainDatasetMeta(
train_dataset=train_dataset,
eval_dataset=eval_dataset,
total_num_steps=total_num_steps,
)
def load_rl_datasets(
*,
cfg: DictDefault,
cli_args: TrainerCliArgs, # pylint: disable=unused-argument
) -> TrainDatasetMeta:
train_datasets: List[Any] = []
for i, ds_cfg in enumerate(cfg.datasets):
train_datasets.insert(i, load_dataset(ds_cfg["path"], split=ds_cfg["split"]))
# eval_dataset = load_dataset(
# cfg.test_datasets[0]["path"], split=cfg.test_datasets[0]["split"]
# )
eval_dataset = None
def argilla_apply_chatml(sample): # pylint: disable=possibly-unused-variable
if "system" in sample and sample["system"]:
sample["prompt"] = (
f"<|im_start|>system\n{sample['system']}<|im_end|>\n"
f"<|im_start|>user\n{sample['instruction']}<|im_end|>\n<|im_start|>assistant\n"
)
else:
sample[
"prompt"
] = f"<|im_start|>user\n{sample['instruction']}<|im_end|>\n<|im_start|>assistant\n"
sample["chosen"] = f"{sample['chosen_response']}<|im_end|>"
sample["rejected"] = f"{sample['rejected_response']}<|im_end|>"
return sample
def intel_apply_chatml(sample): # pylint: disable=possibly-unused-variable
if "system" in sample and sample["system"]:
sample["prompt"] = (
f"<|im_start|>system\n{sample['system']}<|im_end|>\n"
f"<|im_start|>user\n{sample['question']}<|im_end|>\n<|im_start|>assistant\n"
)
else:
sample[
"prompt"
] = f"<|im_start|>user\n{sample['question']}<|im_end|>\n<|im_start|>assistant\n"
sample["chosen"] = f"{sample['chosen']}<|im_end|>"
sample["rejected"] = f"{sample['rejected']}<|im_end|>"
return sample
def apply_chatml(sample): # pylint: disable=possibly-unused-variable
if "system" in sample and sample["system"]:
sample["prompt"] = (
f"<|im_start|>system\n{sample['system']}<|im_end|>\n"
f"<|im_start|>user\n{sample['prompt']}<|im_end|>\n<|im_start|>assistant\n"
)
else:
sample[
"prompt"
] = f"<|im_start|>user\n{sample['prompt']}<|im_end|>\n<|im_start|>assistant\n"
sample["chosen"] = f"{sample['chosen']}<|im_end|>"
sample["rejected"] = f"{sample['rejected']}<|im_end|>"
return sample
def ultra_apply_chatml(sample): # pylint: disable=possibly-unused-variable
if "system" in sample and sample["system"]:
sample["prompt"] = (
f"<|im_start|>system\n{sample['system']}<|im_end|>\n"
f"<|im_start|>user\n{sample['prompt']}<|im_end|>\n<|im_start|>assistant\n"
)
else:
sample[
"prompt"
] = f"<|im_start|>user\n{sample['prompt']}<|im_end|>\n<|im_start|>assistant\n"
sample["chosen"] = f"{sample['chosen'][1]['content']}<|im_end|>"
sample["rejected"] = f"{sample['rejected'][1]['content']}<|im_end|>"
return sample
for i, data_set in enumerate(train_datasets):
_type = cfg.datasets[i]["type"]
ds_type_fn = locals()[_type]
train_datasets[i] = data_set.map(ds_type_fn)
train_dataset = concatenate_datasets(train_datasets)
# eval_dataset = eval_dataset.map(intel_apply_chatml)
total_num_steps = int(
math.ceil(len(train_dataset) * cfg.num_epochs / cfg.batch_size)
)
return TrainDatasetMeta(
train_dataset=train_dataset,
eval_dataset=eval_dataset,
total_num_steps=total_num_steps,
)
def check_accelerate_default_config():
if Path(config_args.default_yaml_config_file).exists():
LOG.warning(
f"accelerate config file found at {config_args.default_yaml_config_file}. This can lead to unexpected errors"
)
def check_user_token():
# Verify if token is valid
api = HfApi()
try:
user_info = api.whoami()
return bool(user_info)
except LocalTokenNotFoundError:
LOG.warning(
"Error verifying HuggingFace token. Remember to log in using `huggingface-cli login` and get your access token from https://huggingface.co/settings/tokens if you want to use gated models or datasets."
)
return False