|
"""Prepare and train a model on a dataset. Can also infer from a model or merge lora""" |
|
|
|
import importlib |
|
import logging |
|
import math |
|
import os |
|
import random |
|
import sys |
|
from pathlib import Path |
|
from threading import Thread |
|
from typing import Any, Dict, List, Optional, Union |
|
|
|
import gradio as gr |
|
import torch |
|
import yaml |
|
|
|
|
|
from accelerate.commands.config import config_args |
|
from art import text2art |
|
from datasets import concatenate_datasets, load_dataset |
|
from huggingface_hub import HfApi |
|
from huggingface_hub.utils import LocalTokenNotFoundError |
|
from transformers import GenerationConfig, TextIteratorStreamer, TextStreamer |
|
|
|
from axolotl.common.cli import TrainerCliArgs, load_model_and_tokenizer |
|
from axolotl.logging_config import configure_logging |
|
from axolotl.train import TrainDatasetMeta |
|
from axolotl.utils.config import normalize_config, validate_config |
|
from axolotl.utils.data import prepare_dataset |
|
from axolotl.utils.dict import DictDefault |
|
from axolotl.utils.distributed import is_main_process |
|
from axolotl.utils.models import load_tokenizer |
|
from axolotl.utils.tokenization import check_dataset_labels |
|
from axolotl.utils.trainer import prepare_optim_env |
|
from axolotl.utils.wandb_ import setup_wandb_env_vars |
|
|
|
project_root = os.path.abspath(os.path.join(os.path.dirname(__file__), "..")) |
|
src_dir = os.path.join(project_root, "src") |
|
sys.path.insert(0, src_dir) |
|
|
|
configure_logging() |
|
LOG = logging.getLogger("axolotl.scripts") |
|
|
|
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1" |
|
|
|
|
|
def print_axolotl_text_art(suffix=None): |
|
font = "nancyj" |
|
ascii_text = " axolotl" |
|
if suffix: |
|
ascii_text += f" x {suffix}" |
|
ascii_art = text2art(ascii_text, font=font) |
|
|
|
if is_main_process(): |
|
print(ascii_art) |
|
|
|
|
|
def get_multi_line_input() -> Optional[str]: |
|
print("Give me an instruction (Ctrl + D to submit): ") |
|
instruction = "" |
|
for line in sys.stdin: |
|
instruction += line |
|
|
|
return instruction |
|
|
|
|
|
def do_merge_lora( |
|
*, |
|
cfg: DictDefault, |
|
cli_args: TrainerCliArgs, |
|
): |
|
model, tokenizer = load_model_and_tokenizer(cfg=cfg, cli_args=cli_args) |
|
safe_serialization = cfg.save_safetensors is True |
|
|
|
LOG.info("running merge of LoRA with base model") |
|
model = model.merge_and_unload() |
|
model.to(dtype=cfg.torch_dtype) |
|
|
|
if cfg.local_rank == 0: |
|
LOG.info(f"saving merged model to: {str(Path(cfg.output_dir) / 'merged')}") |
|
model.save_pretrained( |
|
str(Path(cfg.output_dir) / "merged"), |
|
safe_serialization=safe_serialization, |
|
) |
|
tokenizer.save_pretrained(str(Path(cfg.output_dir) / "merged")) |
|
|
|
|
|
def do_inference( |
|
*, |
|
cfg: DictDefault, |
|
cli_args: TrainerCliArgs, |
|
): |
|
model, tokenizer = load_model_and_tokenizer(cfg=cfg, cli_args=cli_args) |
|
prompter = cli_args.prompter |
|
default_tokens = {"unk_token": "<unk>", "bos_token": "<s>", "eos_token": "</s>"} |
|
|
|
for token, symbol in default_tokens.items(): |
|
|
|
if not (cfg.special_tokens and token in cfg.special_tokens): |
|
tokenizer.add_special_tokens({token: symbol}) |
|
|
|
prompter_module = None |
|
if prompter: |
|
prompter_module = getattr( |
|
importlib.import_module("axolotl.prompters"), prompter |
|
) |
|
|
|
model = model.to(cfg.device, dtype=cfg.torch_dtype) |
|
|
|
while True: |
|
print("=" * 80) |
|
|
|
instruction = get_multi_line_input() |
|
if not instruction: |
|
return |
|
if prompter_module: |
|
prompt: str = next( |
|
prompter_module().build_prompt(instruction=instruction.strip("\n")) |
|
) |
|
else: |
|
prompt = instruction.strip() |
|
batch = tokenizer(prompt, return_tensors="pt", add_special_tokens=True) |
|
|
|
print("=" * 40) |
|
model.eval() |
|
with torch.no_grad(): |
|
generation_config = GenerationConfig( |
|
repetition_penalty=1.1, |
|
max_new_tokens=1024, |
|
temperature=0.9, |
|
top_p=0.95, |
|
top_k=40, |
|
bos_token_id=tokenizer.bos_token_id, |
|
eos_token_id=tokenizer.eos_token_id, |
|
pad_token_id=tokenizer.pad_token_id, |
|
do_sample=True, |
|
use_cache=True, |
|
return_dict_in_generate=True, |
|
output_attentions=False, |
|
output_hidden_states=False, |
|
output_scores=False, |
|
) |
|
streamer = TextStreamer(tokenizer) |
|
generated = model.generate( |
|
inputs=batch["input_ids"].to(cfg.device), |
|
generation_config=generation_config, |
|
streamer=streamer, |
|
) |
|
print("=" * 40) |
|
print(tokenizer.decode(generated["sequences"].cpu().tolist()[0])) |
|
|
|
|
|
def do_inference_gradio( |
|
*, |
|
cfg: DictDefault, |
|
cli_args: TrainerCliArgs, |
|
): |
|
model, tokenizer = load_model_and_tokenizer(cfg=cfg, cli_args=cli_args) |
|
prompter = cli_args.prompter |
|
default_tokens = {"unk_token": "<unk>", "bos_token": "<s>", "eos_token": "</s>"} |
|
|
|
for token, symbol in default_tokens.items(): |
|
|
|
if not (cfg.special_tokens and token in cfg.special_tokens): |
|
tokenizer.add_special_tokens({token: symbol}) |
|
|
|
prompter_module = None |
|
if prompter: |
|
prompter_module = getattr( |
|
importlib.import_module("axolotl.prompters"), prompter |
|
) |
|
|
|
model = model.to(cfg.device, dtype=cfg.torch_dtype) |
|
|
|
def generate(instruction): |
|
if not instruction: |
|
return |
|
if prompter_module: |
|
|
|
prompt: str = next( |
|
prompter_module().build_prompt(instruction=instruction.strip("\n")) |
|
) |
|
else: |
|
prompt = instruction.strip() |
|
batch = tokenizer(prompt, return_tensors="pt", add_special_tokens=True) |
|
|
|
model.eval() |
|
with torch.no_grad(): |
|
generation_config = GenerationConfig( |
|
repetition_penalty=1.1, |
|
max_new_tokens=1024, |
|
temperature=0.9, |
|
top_p=0.95, |
|
top_k=40, |
|
bos_token_id=tokenizer.bos_token_id, |
|
eos_token_id=tokenizer.eos_token_id, |
|
pad_token_id=tokenizer.pad_token_id, |
|
do_sample=True, |
|
use_cache=True, |
|
return_dict_in_generate=True, |
|
output_attentions=False, |
|
output_hidden_states=False, |
|
output_scores=False, |
|
) |
|
streamer = TextIteratorStreamer(tokenizer) |
|
generation_kwargs = { |
|
"inputs": batch["input_ids"].to(cfg.device), |
|
"generation_config": generation_config, |
|
"streamer": streamer, |
|
} |
|
|
|
thread = Thread(target=model.generate, kwargs=generation_kwargs) |
|
thread.start() |
|
|
|
all_text = "" |
|
|
|
for new_text in streamer: |
|
all_text += new_text |
|
yield all_text |
|
|
|
demo = gr.Interface( |
|
fn=generate, |
|
inputs="textbox", |
|
outputs="text", |
|
title=cfg.get("gradio_title", "Axolotl Gradio Interface"), |
|
) |
|
demo.queue().launch(show_api=False, share=True) |
|
|
|
|
|
def choose_config(path: Path): |
|
yaml_files = list(path.glob("*.yml")) |
|
|
|
if not yaml_files: |
|
raise ValueError( |
|
"No YAML config files found in the specified directory. Are you using a .yml extension?" |
|
) |
|
|
|
if len(yaml_files) == 1: |
|
print(f"Using default YAML file '{yaml_files[0]}'") |
|
return yaml_files[0] |
|
|
|
print("Choose a YAML file:") |
|
for idx, file in enumerate(yaml_files): |
|
print(f"{idx + 1}. {file}") |
|
|
|
chosen_file = None |
|
while chosen_file is None: |
|
try: |
|
choice = int(input("Enter the number of your choice: ")) |
|
if 1 <= choice <= len(yaml_files): |
|
chosen_file = yaml_files[choice - 1] |
|
else: |
|
print("Invalid choice. Please choose a number from the list.") |
|
except ValueError: |
|
print("Invalid input. Please enter a number.") |
|
|
|
return chosen_file |
|
|
|
|
|
def check_not_in(list1: List[str], list2: Union[Dict[str, Any], List[str]]) -> bool: |
|
return not any(el in list2 for el in list1) |
|
|
|
|
|
def load_cfg(config: Path = Path("examples/"), **kwargs): |
|
if Path(config).is_dir(): |
|
config = choose_config(config) |
|
|
|
|
|
with open(config, encoding="utf-8") as file: |
|
cfg: DictDefault = DictDefault(yaml.safe_load(file)) |
|
cfg.axolotl_config_path = config |
|
|
|
|
|
cfg_keys = cfg.keys() |
|
for k, _ in kwargs.items(): |
|
|
|
if k in cfg_keys or not cfg.strict: |
|
|
|
if isinstance(cfg[k], bool): |
|
cfg[k] = bool(kwargs[k]) |
|
else: |
|
cfg[k] = kwargs[k] |
|
|
|
validate_config(cfg) |
|
|
|
prepare_optim_env(cfg) |
|
|
|
normalize_config(cfg) |
|
|
|
setup_wandb_env_vars(cfg) |
|
return cfg |
|
|
|
|
|
def load_datasets( |
|
*, |
|
cfg: DictDefault, |
|
cli_args: TrainerCliArgs, |
|
) -> TrainDatasetMeta: |
|
tokenizer = load_tokenizer(cfg) |
|
|
|
train_dataset, eval_dataset, total_num_steps, prompters = prepare_dataset( |
|
cfg, tokenizer |
|
) |
|
|
|
if cli_args.debug or cfg.debug: |
|
LOG.info("check_dataset_labels...") |
|
check_dataset_labels( |
|
train_dataset.select( |
|
[ |
|
random.randrange(0, len(train_dataset) - 1) |
|
for _ in range(cli_args.debug_num_examples) |
|
] |
|
), |
|
tokenizer, |
|
num_examples=cli_args.debug_num_examples, |
|
text_only=cli_args.debug_text_only, |
|
) |
|
|
|
LOG.info("printing prompters...") |
|
for prompter in prompters: |
|
LOG.info(prompter) |
|
|
|
return TrainDatasetMeta( |
|
train_dataset=train_dataset, |
|
eval_dataset=eval_dataset, |
|
total_num_steps=total_num_steps, |
|
) |
|
|
|
|
|
def load_rl_datasets( |
|
*, |
|
cfg: DictDefault, |
|
cli_args: TrainerCliArgs, |
|
) -> TrainDatasetMeta: |
|
train_datasets: List[Any] = [] |
|
for i, ds_cfg in enumerate(cfg.datasets): |
|
train_datasets.insert(i, load_dataset(ds_cfg["path"], split=ds_cfg["split"])) |
|
|
|
|
|
|
|
eval_dataset = None |
|
|
|
def argilla_apply_chatml(sample): |
|
if "system" in sample and sample["system"]: |
|
sample["prompt"] = ( |
|
f"<|im_start|>system\n{sample['system']}<|im_end|>\n" |
|
f"<|im_start|>user\n{sample['instruction']}<|im_end|>\n<|im_start|>assistant\n" |
|
) |
|
else: |
|
sample[ |
|
"prompt" |
|
] = f"<|im_start|>user\n{sample['instruction']}<|im_end|>\n<|im_start|>assistant\n" |
|
sample["chosen"] = f"{sample['chosen_response']}<|im_end|>" |
|
sample["rejected"] = f"{sample['rejected_response']}<|im_end|>" |
|
return sample |
|
|
|
def intel_apply_chatml(sample): |
|
if "system" in sample and sample["system"]: |
|
sample["prompt"] = ( |
|
f"<|im_start|>system\n{sample['system']}<|im_end|>\n" |
|
f"<|im_start|>user\n{sample['question']}<|im_end|>\n<|im_start|>assistant\n" |
|
) |
|
else: |
|
sample[ |
|
"prompt" |
|
] = f"<|im_start|>user\n{sample['question']}<|im_end|>\n<|im_start|>assistant\n" |
|
sample["chosen"] = f"{sample['chosen']}<|im_end|>" |
|
sample["rejected"] = f"{sample['rejected']}<|im_end|>" |
|
return sample |
|
|
|
def apply_chatml(sample): |
|
if "system" in sample and sample["system"]: |
|
sample["prompt"] = ( |
|
f"<|im_start|>system\n{sample['system']}<|im_end|>\n" |
|
f"<|im_start|>user\n{sample['prompt']}<|im_end|>\n<|im_start|>assistant\n" |
|
) |
|
else: |
|
sample[ |
|
"prompt" |
|
] = f"<|im_start|>user\n{sample['prompt']}<|im_end|>\n<|im_start|>assistant\n" |
|
sample["chosen"] = f"{sample['chosen']}<|im_end|>" |
|
sample["rejected"] = f"{sample['rejected']}<|im_end|>" |
|
return sample |
|
|
|
def ultra_apply_chatml(sample): |
|
if "system" in sample and sample["system"]: |
|
sample["prompt"] = ( |
|
f"<|im_start|>system\n{sample['system']}<|im_end|>\n" |
|
f"<|im_start|>user\n{sample['prompt']}<|im_end|>\n<|im_start|>assistant\n" |
|
) |
|
else: |
|
sample[ |
|
"prompt" |
|
] = f"<|im_start|>user\n{sample['prompt']}<|im_end|>\n<|im_start|>assistant\n" |
|
sample["chosen"] = f"{sample['chosen'][1]['content']}<|im_end|>" |
|
sample["rejected"] = f"{sample['rejected'][1]['content']}<|im_end|>" |
|
return sample |
|
|
|
for i, data_set in enumerate(train_datasets): |
|
_type = cfg.datasets[i]["type"] |
|
ds_type_fn = locals()[_type] |
|
train_datasets[i] = data_set.map(ds_type_fn) |
|
train_dataset = concatenate_datasets(train_datasets) |
|
|
|
|
|
|
|
total_num_steps = int( |
|
math.ceil(len(train_dataset) * cfg.num_epochs / cfg.batch_size) |
|
) |
|
|
|
return TrainDatasetMeta( |
|
train_dataset=train_dataset, |
|
eval_dataset=eval_dataset, |
|
total_num_steps=total_num_steps, |
|
) |
|
|
|
|
|
def check_accelerate_default_config(): |
|
if Path(config_args.default_yaml_config_file).exists(): |
|
LOG.warning( |
|
f"accelerate config file found at {config_args.default_yaml_config_file}. This can lead to unexpected errors" |
|
) |
|
|
|
|
|
def check_user_token(): |
|
|
|
api = HfApi() |
|
try: |
|
user_info = api.whoami() |
|
return bool(user_info) |
|
except LocalTokenNotFoundError: |
|
LOG.warning( |
|
"Error verifying HuggingFace token. Remember to log in using `huggingface-cli login` and get your access token from https://huggingface.co/settings/tokens if you want to use gated models or datasets." |
|
) |
|
return False |
|
|