|
""" |
|
CLI to run training on a model |
|
""" |
|
import logging |
|
from pathlib import Path |
|
|
|
import fire |
|
import transformers |
|
|
|
from axolotl.cli import ( |
|
check_accelerate_default_config, |
|
check_user_token, |
|
load_cfg, |
|
load_datasets, |
|
load_rl_datasets, |
|
print_axolotl_text_art, |
|
) |
|
from axolotl.common.cli import TrainerCliArgs |
|
from axolotl.train import train |
|
|
|
LOG = logging.getLogger("axolotl.cli.train") |
|
|
|
|
|
def do_cli(config: Path = Path("examples/"), **kwargs): |
|
|
|
parsed_cfg = load_cfg(config, **kwargs) |
|
print_axolotl_text_art() |
|
check_accelerate_default_config() |
|
check_user_token() |
|
parser = transformers.HfArgumentParser((TrainerCliArgs)) |
|
parsed_cli_args, _ = parser.parse_args_into_dataclasses( |
|
return_remaining_strings=True |
|
) |
|
if parsed_cfg.rl: |
|
dataset_meta = load_rl_datasets(cfg=parsed_cfg, cli_args=parsed_cli_args) |
|
else: |
|
dataset_meta = load_datasets(cfg=parsed_cfg, cli_args=parsed_cli_args) |
|
train(cfg=parsed_cfg, cli_args=parsed_cli_args, dataset_meta=dataset_meta) |
|
|
|
|
|
if __name__ == "__main__": |
|
fire.Fire(do_cli) |
|
|