qwerrwe / src /axolotl /monkeypatch /btlm_attn_hijack_flash.py
winglian's picture
flash_attention + sample packing for stablelm 3b (#671)
2d60ba3 unverified
raw
history blame
2.32 kB
"""
Flash attention monkey patch for cerebras btlm model
"""
import importlib
import logging
from typing import Optional, Tuple
import torch
from accelerate import init_empty_weights
from flash_attn.flash_attn_interface import flash_attn_func
from transformers import AutoConfig, AutoModelForCausalLM
LOG = logging.getLogger("axolotl")
def replace_btlm_attn_with_flash_attn(model_name="cerebras/btlm-3b-8k-base"):
# this is a wonky hack to get the remotely loaded module
model_config = AutoConfig.from_pretrained(model_name, trust_remote_code=True)
# we need to load the model here in order for modeling_btlm to be available
with init_empty_weights():
AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True)
module_name = model_config.__class__.__module__.replace(
".configuration_btlm", ".modeling_btlm"
)
modeling_btlm = importlib.import_module(module_name)
modeling_btlm.BTLMAttention._attn = ( # pylint: disable=protected-access
flashattn_attn
)
def flashattn_attn(
self,
query: torch.Tensor,
key: Optional[torch.Tensor] = None,
value: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None, # pylint: disable=unused-argument
head_mask: Optional[torch.Tensor] = None,
position_bias: Optional[torch.Tensor] = None, # pylint: disable=unused-argument
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
softmax_scale = (
1 / (key.size(-1) ** self.attn_scale_power) if self.scale_attn_weights else None
)
query = query.permute(0, 2, 1, 3)
key = key.permute(0, 2, 1, 3)
value = value.permute(0, 2, 1, 3)
# Perform Flash attention
attn_output = flash_attn_func(
query,
key,
value,
dropout_p=0.0, # Assuming you have this attribute
softmax_scale=softmax_scale, # Set this if you have specific scaling in mind
causal=not self.is_cross_attention, # Assuming you have this attribute
return_attn_probs=False, # Set this based on your needs
)
# Optional: Apply head mask if it's not None
if head_mask is not None:
attn_output *= head_mask
attn_output = attn_output.permute(0, 2, 1, 3)
return attn_output, None # We don't have explicit attn_weights in Flash attention