winglian's picture
qwen2_moe support w multipack (#1455)
6086be8 unverified
raw
history blame
2.7 kB
"""multipack patching for v2 of sample packing"""
import importlib
import transformers
from accelerate import init_empty_weights
from transformers import AutoConfig, AutoModelForCausalLM
from transformers.integrations import is_deepspeed_zero3_enabled
from axolotl.monkeypatch.mixtral import patch_mixtral_moe_forward_zero3
from axolotl.monkeypatch.utils import get_unpad_data
SUPPORTED_MULTIPACK_MODEL_TYPES = [
"mixtral",
"qwen2",
"qwen2_moe",
"falcon",
"phi",
"gemma",
"gemmoe",
"starcoder2",
]
def patch_for_multipack(model_type, model_name=None):
if model_type == "mixtral":
transformers.models.mixtral.modeling_mixtral._get_unpad_data = ( # pylint: disable=protected-access
get_unpad_data
)
if is_deepspeed_zero3_enabled():
patch_mixtral_moe_forward_zero3()
elif model_type == "qwen2":
transformers.models.qwen2.modeling_qwen2._get_unpad_data = ( # pylint: disable=protected-access
get_unpad_data
)
elif model_type == "qwen2_moe":
transformers.models.qwen2_moe.modeling_qwen2_moe._get_unpad_data = ( # pylint: disable=protected-access
get_unpad_data
)
elif model_type == "falcon":
transformers.models.falcon.modeling_falcon._get_unpad_data = ( # pylint: disable=protected-access
get_unpad_data
)
elif model_type == "phi":
transformers.models.phi.modeling_phi._get_unpad_data = ( # pylint: disable=protected-access
get_unpad_data
)
elif model_type == "gemma":
transformers.models.gemma.modeling_gemma._get_unpad_data = ( # pylint: disable=protected-access
get_unpad_data
)
elif model_type == "starcoder2":
transformers.models.starcoder2.modeling_starcoder2._get_unpad_data = ( # pylint: disable=protected-access
get_unpad_data
)
elif model_type == "gemmoe":
patch_remote(model_name, ".configuration_gemmoe", ".modeling_gemmoe")
elif model_type == "jamba":
patch_remote(model_name, ".configuration_jamba", ".modeling_jamba")
def patch_remote(model_name, config_name, modeling_name):
model_config = AutoConfig.from_pretrained(model_name, trust_remote_code=True)
# we need to load the model here in order for modeling_* to be available
with init_empty_weights():
AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True)
module_name = model_config.__class__.__module__.replace(config_name, modeling_name)
modeling_arch = importlib.import_module(module_name)
modeling_arch._get_unpad_data = get_unpad_data # pylint: disable=protected-access