|
""" |
|
Test module for alpaca integration w chatml |
|
""" |
|
import pytest |
|
from datasets import Dataset |
|
from tokenizers import AddedToken |
|
from transformers import AutoTokenizer |
|
|
|
from axolotl.datasets import TokenizedPromptDataset |
|
from axolotl.prompt_tokenizers import AlpacaPromptTokenizingStrategy |
|
from axolotl.prompters import AlpacaPrompter, PromptStyle |
|
|
|
|
|
@pytest.fixture(name="alpaca_dataset") |
|
def fixture_alpaca_dataset(): |
|
return Dataset.from_list( |
|
[ |
|
{ |
|
"instruction": "Evaluate this sentence for spelling and grammar mistakes", |
|
"input": "He finnished his meal and left the resturant", |
|
"output": "He finished his meal and left the restaurant.", |
|
} |
|
] |
|
) |
|
|
|
|
|
@pytest.fixture(name="tokenizer") |
|
def fixture_tokenizer(): |
|
|
|
tokenizer = AutoTokenizer.from_pretrained( |
|
"casperhansen/mistral-7b-instruct-v0.1-awq" |
|
) |
|
tokenizer.add_special_tokens( |
|
{ |
|
"eos_token": AddedToken( |
|
"<|im_end|>", rstrip=False, lstrip=False, normalized=False |
|
) |
|
} |
|
) |
|
tokenizer.add_tokens( |
|
[ |
|
AddedToken("<|im_start|>", rstrip=False, lstrip=False, normalized=False), |
|
] |
|
) |
|
|
|
return tokenizer |
|
|
|
|
|
class TestAlpacaChatml: |
|
""" |
|
Test class for alpaca prompter |
|
""" |
|
|
|
def test_no_double_im_end(self, alpaca_dataset, tokenizer): |
|
strategy = AlpacaPromptTokenizingStrategy( |
|
AlpacaPrompter(prompt_style=PromptStyle.CHATML.value), |
|
tokenizer, |
|
False, |
|
2048, |
|
) |
|
|
|
dataset_wrapper = TokenizedPromptDataset( |
|
strategy, alpaca_dataset, process_count=1 |
|
) |
|
|
|
input_ids = dataset_wrapper[0]["input_ids"] |
|
|
|
assert input_ids == [ |
|
1, |
|
32001, 1587, 13, 20548, 336, 349, 396, 13126, 369, 13966, 264, 3638, 28725, 5881, 1360, 395, 396, 2787, 369, 5312, 3629, 2758, 28723, 12018, 264, 2899, 369, 6582, 1999, 2691, 274, 272, 2159, 28723, 32000, 28705, 13, |
|
32001, 2188, 13, 16627, 11931, 456, 12271, 354, 668, 3572, 304, 18756, 3479, 17179, 13, 2428, 854, 28711, 1497, 516, 11314, 304, 1749, 272, 1846, 324, 440, 32000, 28705, 13, |
|
32001, 13892, 13, 650, 5967, 516, 11314, 304, 1749, 272, 9926, 28723, 32000, |
|
] |
|
|
|
|
|
def test_no_train_on_input(self, alpaca_dataset, tokenizer): |
|
strategy = AlpacaPromptTokenizingStrategy( |
|
AlpacaPrompter(prompt_style=PromptStyle.CHATML.value), |
|
tokenizer, |
|
False, |
|
2048, |
|
) |
|
|
|
dataset_wrapper = TokenizedPromptDataset( |
|
strategy, alpaca_dataset, process_count=1 |
|
) |
|
|
|
labels = dataset_wrapper[0]["labels"] |
|
|
|
assert labels == [ |
|
-100, |
|
-100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, |
|
-100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, |
|
-100, -100, -100, 650, 5967, 516, 11314, 304, 1749, 272, 9926, 28723, 32000, |
|
] |
|
|
|
|
|
def test_w_train_on_input(self, alpaca_dataset, tokenizer): |
|
strategy = AlpacaPromptTokenizingStrategy( |
|
AlpacaPrompter(prompt_style=PromptStyle.CHATML.value), |
|
tokenizer, |
|
True, |
|
2048, |
|
) |
|
|
|
dataset_wrapper = TokenizedPromptDataset( |
|
strategy, alpaca_dataset, process_count=1 |
|
) |
|
|
|
labels = dataset_wrapper[0]["labels"] |
|
|
|
assert labels == [ |
|
1, |
|
32001, 1587, 13, 20548, 336, 349, 396, 13126, 369, 13966, 264, 3638, 28725, 5881, 1360, 395, 396, 2787, 369, 5312, 3629, 2758, 28723, 12018, 264, 2899, 369, 6582, 1999, 2691, 274, 272, 2159, 28723, 32000, 28705, 13, |
|
32001, 2188, 13, 16627, 11931, 456, 12271, 354, 668, 3572, 304, 18756, 3479, 17179, 13, 2428, 854, 28711, 1497, 516, 11314, 304, 1749, 272, 1846, 324, 440, 32000, 28705, 13, |
|
32001, 13892, 13, 650, 5967, 516, 11314, 304, 1749, 272, 9926, 28723, 32000, |
|
] |
|
|
|
|