qwerrwe / tests /test_datasets.py
fozziethebeat's picture
Support loading datasets saved via save_to_disk (#1432)
e634118 unverified
raw
history blame
9.83 kB
"""
Test dataset loading under various conditions.
"""
import shutil
import tempfile
import unittest
from pathlib import Path
from datasets import Dataset
from huggingface_hub import snapshot_download
from transformers import AutoTokenizer
from axolotl.utils.data import load_tokenized_prepared_datasets
from axolotl.utils.dict import DictDefault
class TestDatasetPreparation(unittest.TestCase):
"""Test a configured dataloader."""
def setUp(self) -> None:
self.tokenizer = AutoTokenizer.from_pretrained("huggyllama/llama-7b")
self.tokenizer.add_special_tokens(
{
"bos_token": "<s>",
"eos_token": "</s>",
"unk_token": "<unk>",
}
)
# Alpaca dataset.
self.dataset = Dataset.from_list(
[
{
"instruction": "Evaluate this sentence for spelling and grammar mistakes",
"input": "He finnished his meal and left the resturant",
"output": "He finished his meal and left the restaurant.",
}
]
)
def test_load_hub(self):
"""Core use case. Verify that processing data from the hub works"""
with tempfile.TemporaryDirectory() as tmp_dir:
prepared_path = Path(tmp_dir) / "prepared"
cfg = DictDefault(
{
"tokenizer_config": "huggyllama/llama-7b",
"sequence_len": 1024,
"datasets": [
{
"path": "mhenrichsen/alpaca_2k_test",
"type": "alpaca",
},
],
}
)
dataset, _ = load_tokenized_prepared_datasets(
self.tokenizer, cfg, prepared_path
)
assert len(dataset) == 2000
assert "input_ids" in dataset.features
assert "attention_mask" in dataset.features
assert "labels" in dataset.features
def test_load_local_hub(self):
"""Niche use case. Verify that a local copy of a hub dataset can be loaded"""
with tempfile.TemporaryDirectory() as tmp_dir:
tmp_ds_path = Path("mhenrichsen/alpaca_2k_test")
tmp_ds_path.mkdir(parents=True, exist_ok=True)
snapshot_download(
repo_id="mhenrichsen/alpaca_2k_test",
repo_type="dataset",
local_dir=tmp_ds_path,
)
prepared_path = Path(tmp_dir) / "prepared"
# Right now a local copy that doesn't fully conform to a dataset
# must list data_files and ds_type otherwise the loader won't know
# how to load it.
cfg = DictDefault(
{
"tokenizer_config": "huggyllama/llama-7b",
"sequence_len": 1024,
"datasets": [
{
"path": "mhenrichsen/alpaca_2k_test",
"ds_type": "parquet",
"type": "alpaca",
"data_files": [
"mhenrichsen/alpaca_2k_test/alpaca_2000.parquet",
],
},
],
}
)
dataset, _ = load_tokenized_prepared_datasets(
self.tokenizer, cfg, prepared_path
)
assert len(dataset) == 2000
assert "input_ids" in dataset.features
assert "attention_mask" in dataset.features
assert "labels" in dataset.features
shutil.rmtree(tmp_ds_path)
def test_load_from_save_to_disk(self):
"""Usual use case. Verify datasets saved via `save_to_disk` can be loaded."""
with tempfile.TemporaryDirectory() as tmp_dir:
tmp_ds_name = Path(tmp_dir) / "tmp_dataset"
self.dataset.save_to_disk(tmp_ds_name)
prepared_path = Path(tmp_dir) / "prepared"
cfg = DictDefault(
{
"tokenizer_config": "huggyllama/llama-7b",
"sequence_len": 256,
"datasets": [
{
"path": str(tmp_ds_name),
"type": "alpaca",
},
],
}
)
dataset, _ = load_tokenized_prepared_datasets(
self.tokenizer, cfg, prepared_path
)
assert len(dataset) == 1
assert "input_ids" in dataset.features
assert "attention_mask" in dataset.features
assert "labels" in dataset.features
def test_load_from_dir_of_parquet(self):
"""Usual use case. Verify a directory of parquet files can be loaded."""
with tempfile.TemporaryDirectory() as tmp_dir:
tmp_ds_dir = Path(tmp_dir) / "tmp_dataset"
tmp_ds_dir.mkdir()
tmp_ds_path = tmp_ds_dir / "shard1.parquet"
self.dataset.to_parquet(tmp_ds_path)
prepared_path: Path = Path(tmp_dir) / "prepared"
cfg = DictDefault(
{
"tokenizer_config": "huggyllama/llama-7b",
"sequence_len": 256,
"datasets": [
{
"path": str(tmp_ds_dir),
"ds_type": "parquet",
"name": "test_data",
"data_files": [
str(tmp_ds_path),
],
"type": "alpaca",
},
],
}
)
dataset, _ = load_tokenized_prepared_datasets(
self.tokenizer, cfg, prepared_path
)
assert len(dataset) == 1
assert "input_ids" in dataset.features
assert "attention_mask" in dataset.features
assert "labels" in dataset.features
def test_load_from_dir_of_json(self):
"""Standard use case. Verify a directory of json files can be loaded."""
with tempfile.TemporaryDirectory() as tmp_dir:
tmp_ds_dir = Path(tmp_dir) / "tmp_dataset"
tmp_ds_dir.mkdir()
tmp_ds_path = tmp_ds_dir / "shard1.json"
self.dataset.to_json(tmp_ds_path)
prepared_path: Path = Path(tmp_dir) / "prepared"
cfg = DictDefault(
{
"tokenizer_config": "huggyllama/llama-7b",
"sequence_len": 256,
"datasets": [
{
"path": str(tmp_ds_dir),
"ds_type": "json",
"name": "test_data",
"data_files": [
str(tmp_ds_path),
],
"type": "alpaca",
},
],
}
)
dataset, _ = load_tokenized_prepared_datasets(
self.tokenizer, cfg, prepared_path
)
assert len(dataset) == 1
assert "input_ids" in dataset.features
assert "attention_mask" in dataset.features
assert "labels" in dataset.features
def test_load_from_single_parquet(self):
"""Standard use case. Verify a single parquet file can be loaded."""
with tempfile.TemporaryDirectory() as tmp_dir:
tmp_ds_path = Path(tmp_dir) / "tmp_dataset.parquet"
self.dataset.to_parquet(tmp_ds_path)
prepared_path: Path = Path(tmp_dir) / "prepared"
cfg = DictDefault(
{
"tokenizer_config": "huggyllama/llama-7b",
"sequence_len": 256,
"datasets": [
{
"path": str(tmp_ds_path),
"name": "test_data",
"type": "alpaca",
},
],
}
)
dataset, _ = load_tokenized_prepared_datasets(
self.tokenizer, cfg, prepared_path
)
assert len(dataset) == 1
assert "input_ids" in dataset.features
assert "attention_mask" in dataset.features
assert "labels" in dataset.features
def test_load_from_single_json(self):
"""Standard use case. Verify a single json file can be loaded."""
with tempfile.TemporaryDirectory() as tmp_dir:
tmp_ds_path = Path(tmp_dir) / "tmp_dataset.json"
self.dataset.to_json(tmp_ds_path)
prepared_path: Path = Path(tmp_dir) / "prepared"
cfg = DictDefault(
{
"tokenizer_config": "huggyllama/llama-7b",
"sequence_len": 256,
"datasets": [
{
"path": str(tmp_ds_path),
"name": "test_data",
"type": "alpaca",
},
],
}
)
dataset, _ = load_tokenized_prepared_datasets(
self.tokenizer, cfg, prepared_path
)
assert len(dataset) == 1
assert "input_ids" in dataset.features
assert "attention_mask" in dataset.features
assert "labels" in dataset.features
if __name__ == "__main__":
unittest.main()