|
""" |
|
This module contains unit tests for the `freeze_layers_except` function. |
|
|
|
The `freeze_layers_except` function is used to freeze layers in a model, except for the specified layers. |
|
The unit tests in this module verify the behavior of the `freeze_layers_except` function in different scenarios. |
|
""" |
|
|
|
import unittest |
|
|
|
import torch |
|
from torch import nn |
|
|
|
from axolotl.utils.freeze import freeze_layers_except |
|
|
|
ZERO = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] |
|
ONE_TO_TEN = [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0] |
|
|
|
|
|
class TestFreezeLayersExcept(unittest.TestCase): |
|
""" |
|
A test case class for the `freeze_layers_except` function. |
|
""" |
|
|
|
def setUp(self): |
|
self.model = _TestModel() |
|
|
|
def test_freeze_layers_with_dots_in_name(self): |
|
freeze_layers_except(self.model, ["features.layer"]) |
|
self.assertTrue( |
|
self.model.features.layer.weight.requires_grad, |
|
"model.features.layer should be trainable.", |
|
) |
|
self.assertFalse( |
|
self.model.classifier.weight.requires_grad, |
|
"model.classifier should be frozen.", |
|
) |
|
|
|
def test_freeze_layers_without_dots_in_name(self): |
|
freeze_layers_except(self.model, ["classifier"]) |
|
self.assertFalse( |
|
self.model.features.layer.weight.requires_grad, |
|
"model.features.layer should be trainable.", |
|
) |
|
self.assertTrue( |
|
self.model.classifier.weight.requires_grad, |
|
"model.classifier should be frozen.", |
|
) |
|
|
|
def test_freeze_layers_regex_patterns(self): |
|
|
|
freeze_layers_except(self.model, [r"^features.[a-z]+.weight$", r"class[a-c]+"]) |
|
self.assertTrue( |
|
self.model.features.layer.weight.requires_grad, |
|
"model.features.layer should be trainable.", |
|
) |
|
self.assertFalse( |
|
self.model.classifier.weight.requires_grad, |
|
"model.classifier should be frozen.", |
|
) |
|
|
|
def test_all_layers_frozen(self): |
|
freeze_layers_except(self.model, []) |
|
self.assertFalse( |
|
self.model.features.layer.weight.requires_grad, |
|
"model.features.layer should be frozen.", |
|
) |
|
self.assertFalse( |
|
self.model.classifier.weight.requires_grad, |
|
"model.classifier should be frozen.", |
|
) |
|
|
|
def test_all_layers_unfrozen(self): |
|
freeze_layers_except(self.model, ["features.layer", "classifier"]) |
|
self.assertTrue( |
|
self.model.features.layer.weight.requires_grad, |
|
"model.features.layer should be trainable.", |
|
) |
|
self.assertTrue( |
|
self.model.classifier.weight.requires_grad, |
|
"model.classifier should be trainable.", |
|
) |
|
|
|
def test_freeze_layers_with_range_pattern_start_end(self): |
|
freeze_layers_except(self.model, ["features.layer[1:5]"]) |
|
self.assertTrue( |
|
self.model.features.layer.weight.requires_grad, |
|
"model.features.layer should be trainable.", |
|
) |
|
self.assertFalse( |
|
self.model.classifier.weight.requires_grad, |
|
"model.classifier should be frozen.", |
|
) |
|
|
|
self._assert_gradient_output( |
|
[ |
|
ZERO, |
|
ONE_TO_TEN, |
|
ONE_TO_TEN, |
|
ONE_TO_TEN, |
|
ONE_TO_TEN, |
|
ZERO, |
|
ZERO, |
|
ZERO, |
|
ZERO, |
|
ZERO, |
|
] |
|
) |
|
|
|
def test_freeze_layers_with_range_pattern_single_index(self): |
|
freeze_layers_except(self.model, ["features.layer[5]"]) |
|
self.assertTrue( |
|
self.model.features.layer.weight.requires_grad, |
|
"model.features.layer should be trainable.", |
|
) |
|
self.assertFalse( |
|
self.model.classifier.weight.requires_grad, |
|
"model.classifier should be frozen.", |
|
) |
|
|
|
self._assert_gradient_output( |
|
[ZERO, ZERO, ZERO, ZERO, ZERO, ONE_TO_TEN, ZERO, ZERO, ZERO, ZERO] |
|
) |
|
|
|
def test_freeze_layers_with_range_pattern_start_omitted(self): |
|
freeze_layers_except(self.model, ["features.layer[:5]"]) |
|
self.assertTrue( |
|
self.model.features.layer.weight.requires_grad, |
|
"model.features.layer should be trainable.", |
|
) |
|
self.assertFalse( |
|
self.model.classifier.weight.requires_grad, |
|
"model.classifier should be frozen.", |
|
) |
|
|
|
self._assert_gradient_output( |
|
[ |
|
ONE_TO_TEN, |
|
ONE_TO_TEN, |
|
ONE_TO_TEN, |
|
ONE_TO_TEN, |
|
ONE_TO_TEN, |
|
ZERO, |
|
ZERO, |
|
ZERO, |
|
ZERO, |
|
ZERO, |
|
] |
|
) |
|
|
|
def test_freeze_layers_with_range_pattern_end_omitted(self): |
|
freeze_layers_except(self.model, ["features.layer[4:]"]) |
|
self.assertTrue( |
|
self.model.features.layer.weight.requires_grad, |
|
"model.features.layer should be trainable.", |
|
) |
|
self.assertFalse( |
|
self.model.classifier.weight.requires_grad, |
|
"model.classifier should be frozen.", |
|
) |
|
|
|
self._assert_gradient_output( |
|
[ |
|
ZERO, |
|
ZERO, |
|
ZERO, |
|
ZERO, |
|
ONE_TO_TEN, |
|
ONE_TO_TEN, |
|
ONE_TO_TEN, |
|
ONE_TO_TEN, |
|
ONE_TO_TEN, |
|
ONE_TO_TEN, |
|
] |
|
) |
|
|
|
def test_freeze_layers_with_range_pattern_merge_included(self): |
|
freeze_layers_except(self.model, ["features.layer[4:]", "features.layer[5:6]"]) |
|
self.assertTrue( |
|
self.model.features.layer.weight.requires_grad, |
|
"model.features.layer should be trainable.", |
|
) |
|
self.assertFalse( |
|
self.model.classifier.weight.requires_grad, |
|
"model.classifier should be frozen.", |
|
) |
|
|
|
self._assert_gradient_output( |
|
[ |
|
ZERO, |
|
ZERO, |
|
ZERO, |
|
ZERO, |
|
ONE_TO_TEN, |
|
ONE_TO_TEN, |
|
ONE_TO_TEN, |
|
ONE_TO_TEN, |
|
ONE_TO_TEN, |
|
ONE_TO_TEN, |
|
] |
|
) |
|
|
|
def test_freeze_layers_with_range_pattern_merge_intersect(self): |
|
freeze_layers_except(self.model, ["features.layer[4:7]", "features.layer[6:8]"]) |
|
self.assertTrue( |
|
self.model.features.layer.weight.requires_grad, |
|
"model.features.layer should be trainable.", |
|
) |
|
self.assertFalse( |
|
self.model.classifier.weight.requires_grad, |
|
"model.classifier should be frozen.", |
|
) |
|
|
|
self._assert_gradient_output( |
|
[ |
|
ZERO, |
|
ZERO, |
|
ZERO, |
|
ZERO, |
|
ONE_TO_TEN, |
|
ONE_TO_TEN, |
|
ONE_TO_TEN, |
|
ONE_TO_TEN, |
|
ZERO, |
|
ZERO, |
|
] |
|
) |
|
|
|
def test_freeze_layers_with_range_pattern_merge_separate(self): |
|
freeze_layers_except( |
|
self.model, |
|
["features.layer[1:2]", "features.layer[3:4]", "features.layer[5:6]"], |
|
) |
|
self.assertTrue( |
|
self.model.features.layer.weight.requires_grad, |
|
"model.features.layer should be trainable.", |
|
) |
|
self.assertFalse( |
|
self.model.classifier.weight.requires_grad, |
|
"model.classifier should be frozen.", |
|
) |
|
|
|
self._assert_gradient_output( |
|
[ |
|
ZERO, |
|
ONE_TO_TEN, |
|
ZERO, |
|
ONE_TO_TEN, |
|
ZERO, |
|
ONE_TO_TEN, |
|
ZERO, |
|
ZERO, |
|
ZERO, |
|
ZERO, |
|
] |
|
) |
|
|
|
def _assert_gradient_output(self, expected): |
|
input_tensor = torch.tensor([ONE_TO_TEN], dtype=torch.float32) |
|
|
|
self.model.features.layer.weight.grad = None |
|
output = self.model.features.layer(input_tensor) |
|
loss = output.sum() |
|
loss.backward() |
|
|
|
expected_grads = torch.tensor(expected) |
|
torch.testing.assert_close( |
|
self.model.features.layer.weight.grad, expected_grads |
|
) |
|
|
|
|
|
class _SubLayerModule(nn.Module): |
|
def __init__(self): |
|
super().__init__() |
|
self.layer = nn.Linear(10, 10) |
|
|
|
|
|
class _TestModel(nn.Module): |
|
def __init__(self): |
|
super().__init__() |
|
self.features = _SubLayerModule() |
|
self.classifier = nn.Linear(10, 2) |
|
|
|
|
|
if __name__ == "__main__": |
|
unittest.main() |
|
|