winglian's picture
allow the sharegpt handler to also better handle datasets destined for openai finetuning (#1361)
2598c9f unverified
raw
history blame
5.08 kB
"""Module containing the SimpleShareGPTPromptTokenizingStrategy class"""
from typing import Any, Dict, Optional
from fastchat.conversation import Conversation, SeparatorStyle, register_conv_template
from axolotl.prompt_tokenizers import ShareGPTPromptTokenizingStrategy
from axolotl.prompters import ShareGPTPrompterV2
def register_chatml_template(system_message=None):
system_message = system_message or "You are a helpful assistant."
register_conv_template(
Conversation(
name="chatml",
system_template="<|im_start|>system\n{system_message}",
system_message=system_message,
roles=["<|im_start|>user", "<|im_start|>assistant"],
sep_style=SeparatorStyle.CHATML,
sep="<|im_end|>",
)
)
def load(tokenizer, cfg, ds_cfg: Optional[Dict[str, Any]] = None):
conversation = (
ds_cfg["conversation"] if ds_cfg and "conversation" in ds_cfg else None
)
field_human = ds_cfg["field_human"] if ds_cfg and "field_human" in ds_cfg else None
field_model = ds_cfg["field_model"] if ds_cfg and "field_model" in ds_cfg else None
strategy = SimpleShareGPTPromptTokenizingStrategy(
ShareGPTPrompterV2(
conversation=conversation,
role_key_model=field_model,
role_key_human=field_human,
),
tokenizer,
cfg.train_on_inputs,
cfg.sequence_len,
)
if ds_cfg and "strict" in ds_cfg:
strategy.strict = ds_cfg["strict"]
return strategy
def load_ultrachat(tokenizer, cfg, ds_cfg: Optional[Dict[str, Any]] = None):
conversation = (
ds_cfg["conversation"] if ds_cfg and "conversation" in ds_cfg else None
)
strategy = UltrachatShareGPTPromptTokenizingStrategy(
ShareGPTPrompterV2(
conversation=conversation,
),
tokenizer,
cfg.train_on_inputs,
cfg.sequence_len,
)
if ds_cfg and "strict" in ds_cfg:
strategy.strict = ds_cfg["strict"]
return strategy
def load_role(tokenizer, cfg):
return SimpleRoleShareGPTPromptTokenizingStrategy(
ShareGPTPrompterV2(),
tokenizer,
cfg.train_on_inputs,
cfg.sequence_len,
)
def load_guanaco(tokenizer, cfg):
return GuanacoShareGPTPromptTokenizingStrategy(
ShareGPTPrompterV2(),
tokenizer,
cfg.train_on_inputs,
cfg.sequence_len,
)
class SimpleShareGPTPromptTokenizingStrategy(ShareGPTPromptTokenizingStrategy):
"""
basic sharegpt strategy to grab conversations from the sample row
"""
_strict = False
@property
def strict(self):
return self._strict
@strict.setter
def strict(self, strict):
self._strict = strict
def get_conversation_thread(self, prompt):
conversations = prompt["conversations"]
if self.strict:
return conversations
role_key = "from"
if "role" in conversations[0].keys():
role_key = "role"
value_key = "value"
if "text" in conversations[0].keys():
value_key = "text"
elif "content" in conversations[0].keys():
value_key = "content"
# remap roles - allow for assistant turn"
role_map = {
"user": "human",
"human": "human",
"assistant": "gpt",
"gpt": "gpt",
"system": "system",
}
turns = [
{"from": role_map[t[role_key]], "value": t[value_key]}
for t in conversations
]
return turns
class SimpleRoleShareGPTPromptTokenizingStrategy(ShareGPTPromptTokenizingStrategy):
"""
basic sharegpt strategy to grab conversations from the sample row, but uses role instead of from
"""
def get_conversation_thread(self, prompt):
conversations = prompt["conversations"]
# remap role: prompter/assistant, text: ... => from: human/gpt, value: ...
turns = [{"from": t["role"], "value": t["value"]} for t in conversations]
return turns
class GuanacoShareGPTPromptTokenizingStrategy(ShareGPTPromptTokenizingStrategy):
"""
sharegpt strategy that remaps oasst data to sharegpt format
"""
def get_conversation_thread(self, prompt):
conversations = prompt["conversations"]
# remap role: prompter/assistant, text: ... => from: human/gpt, value: ...
role_map = {"prompter": "human", "assistant": "gpt"}
turns = [
{"from": role_map[t["role"]], "value": t["text"]} for t in conversations
]
return turns
class UltrachatShareGPTPromptTokenizingStrategy(SimpleShareGPTPromptTokenizingStrategy):
"""
sharegpt strategy that remaps ultrachat data to sharegpt format
"""
def get_conversation_thread(self, prompt):
conversations = prompt["messages"]
role_map = {"user": "human", "assistant": "gpt"}
turns = [
{"from": role_map[t["role"]], "value": t["content"]} for t in conversations
]
return turns