qwerrwe / tests /e2e /test_dpo.py
tokestermw's picture
Add ORPO example and e2e test (#1572)
98c25e1 unverified
raw
history blame
7.35 kB
"""
E2E tests for lora llama
"""
import logging
import os
import unittest
from pathlib import Path
import pytest
from axolotl.cli import load_rl_datasets
from axolotl.common.cli import TrainerCliArgs
from axolotl.train import train
from axolotl.utils.config import normalize_config
from axolotl.utils.dict import DictDefault
from .utils import with_temp_dir
LOG = logging.getLogger("axolotl.tests.e2e")
os.environ["WANDB_DISABLED"] = "true"
@pytest.mark.skip(reason="doesn't seem to work on modal")
class TestDPOLlamaLora(unittest.TestCase):
"""
Test case for DPO Llama models using LoRA
"""
@with_temp_dir
def test_dpo_lora(self, temp_dir):
# pylint: disable=duplicate-code
cfg = DictDefault(
{
"base_model": "JackFram/llama-68m",
"tokenizer_type": "LlamaTokenizer",
"sequence_len": 1024,
"load_in_8bit": True,
"adapter": "lora",
"lora_r": 64,
"lora_alpha": 32,
"lora_dropout": 0.1,
"lora_target_linear": True,
"special_tokens": {},
"rl": "dpo",
"datasets": [
{
"path": "Intel/orca_dpo_pairs",
"type": "chatml.intel",
"split": "train",
},
],
"num_epochs": 1,
"micro_batch_size": 4,
"gradient_accumulation_steps": 1,
"output_dir": temp_dir,
"learning_rate": 0.00001,
"optimizer": "paged_adamw_8bit",
"lr_scheduler": "cosine",
"max_steps": 20,
"save_steps": 10,
"warmup_steps": 5,
"gradient_checkpointing": True,
"gradient_checkpointing_kwargs": {"use_reentrant": True},
}
)
normalize_config(cfg)
cli_args = TrainerCliArgs()
dataset_meta = load_rl_datasets(cfg=cfg, cli_args=cli_args)
train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta)
assert (Path(temp_dir) / "checkpoint-20/adapter_model.safetensors").exists()
@with_temp_dir
def test_kto_pair_lora(self, temp_dir):
# pylint: disable=duplicate-code
cfg = DictDefault(
{
"base_model": "JackFram/llama-68m",
"tokenizer_type": "LlamaTokenizer",
"sequence_len": 1024,
"load_in_8bit": True,
"adapter": "lora",
"lora_r": 64,
"lora_alpha": 32,
"lora_dropout": 0.1,
"lora_target_linear": True,
"special_tokens": {},
"rl": "kto_pair",
"datasets": [
{
"path": "Intel/orca_dpo_pairs",
"type": "chatml.intel",
"split": "train",
},
],
"num_epochs": 1,
"micro_batch_size": 4,
"gradient_accumulation_steps": 1,
"output_dir": temp_dir,
"learning_rate": 0.00001,
"optimizer": "paged_adamw_8bit",
"lr_scheduler": "cosine",
"max_steps": 20,
"save_steps": 10,
"warmup_steps": 5,
"gradient_checkpointing": True,
"gradient_checkpointing_kwargs": {"use_reentrant": True},
}
)
normalize_config(cfg)
cli_args = TrainerCliArgs()
dataset_meta = load_rl_datasets(cfg=cfg, cli_args=cli_args)
train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta)
assert (Path(temp_dir) / "checkpoint-20/adapter_model.safetensors").exists()
@with_temp_dir
def test_ipo_lora(self, temp_dir):
# pylint: disable=duplicate-code
cfg = DictDefault(
{
"base_model": "JackFram/llama-68m",
"tokenizer_type": "LlamaTokenizer",
"sequence_len": 1024,
"load_in_8bit": True,
"adapter": "lora",
"lora_r": 64,
"lora_alpha": 32,
"lora_dropout": 0.1,
"lora_target_linear": True,
"special_tokens": {},
"rl": "ipo",
"datasets": [
{
"path": "Intel/orca_dpo_pairs",
"type": "chatml.intel",
"split": "train",
},
],
"num_epochs": 1,
"micro_batch_size": 4,
"gradient_accumulation_steps": 1,
"output_dir": temp_dir,
"learning_rate": 0.00001,
"optimizer": "paged_adamw_8bit",
"lr_scheduler": "cosine",
"max_steps": 20,
"save_steps": 10,
"warmup_steps": 5,
"gradient_checkpointing": True,
"gradient_checkpointing_kwargs": {"use_reentrant": True},
}
)
normalize_config(cfg)
cli_args = TrainerCliArgs()
dataset_meta = load_rl_datasets(cfg=cfg, cli_args=cli_args)
train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta)
assert (Path(temp_dir) / "checkpoint-20/adapter_model.safetensors").exists()
@with_temp_dir
def test_orpo_lora(self, temp_dir):
# pylint: disable=duplicate-code
cfg = DictDefault(
{
"base_model": "JackFram/llama-68m",
"tokenizer_type": "LlamaTokenizer",
"sequence_len": 1024,
"load_in_8bit": True,
"adapter": "lora",
"lora_r": 64,
"lora_alpha": 32,
"lora_dropout": 0.1,
"lora_target_linear": True,
"special_tokens": {},
"rl": "orpo",
"orpo_alpha": 0.1,
"remove_unused_columns": False,
"chat_template": "chatml",
"datasets": [
{
"path": "argilla/ultrafeedback-binarized-preferences-cleaned",
"type": "chat_template.argilla",
"split": "train",
},
],
"num_epochs": 1,
"micro_batch_size": 4,
"gradient_accumulation_steps": 1,
"output_dir": temp_dir,
"learning_rate": 0.00001,
"optimizer": "paged_adamw_8bit",
"lr_scheduler": "cosine",
"max_steps": 20,
"save_steps": 10,
"warmup_steps": 5,
"gradient_checkpointing": True,
"gradient_checkpointing_kwargs": {"use_reentrant": True},
}
)
normalize_config(cfg)
cli_args = TrainerCliArgs()
dataset_meta = load_rl_datasets(cfg=cfg, cli_args=cli_args)
train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta)
assert (Path(temp_dir) / "checkpoint-20/adapter_model.safetensors").exists()