winglian's picture
simplify haldning for newer multipack patches so they can be added in a single place (#1270)
5698943 unverified
raw
history blame
2.03 kB
"""
Patches to support multipack for mixtral
"""
import torch
def patch_mixtral_moe_forward_zero3() -> None:
import torch.nn.functional as F
def mlp_forward(self, hidden_states):
current_hidden_states = self.act_fn(self.w1(hidden_states)) * self.w3(
hidden_states
)
current_hidden_states = self.w2(current_hidden_states)
return current_hidden_states
# Ref. https://huggingface.co/deepseek-ai/deepseek-moe-16b-base/blob/main/modeling_deepseek.py
def moe_forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
batch_size, sequence_length, hidden_dim = hidden_states.shape
hidden_states = hidden_states.view(-1, hidden_dim)
# router_logits: (batch * sequence_length, n_experts)
router_logits = self.gate(hidden_states)
routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float)
topk_weight, topk_idx = torch.topk(
routing_weights, self.top_k, dim=-1, sorted=False
)
topk_weight /= topk_weight.sum(dim=-1, keepdim=True)
# we cast back to the input dtype
topk_weight = topk_weight.to(hidden_states.dtype)
hidden_states = hidden_states.repeat_interleave(self.top_k, dim=0)
y = torch.empty_like(hidden_states) # pylint: disable=invalid-name
flat_topk_idx = topk_idx.view(-1)
for i in range(self.num_experts):
expert = self.experts[i]
y[flat_topk_idx == i] = expert(hidden_states[flat_topk_idx == i])
y = ( # pylint: disable=invalid-name
y.view(*topk_weight.shape, -1) * topk_weight.unsqueeze(-1)
).sum(dim=1)
final_hidden_states = y.reshape(batch_size, sequence_length, hidden_dim)
return final_hidden_states, router_logits
from transformers.models.mixtral.modeling_mixtral import (
MixtralBLockSparseTop2MLP,
MixtralSparseMoeBlock,
)
MixtralBLockSparseTop2MLP.forward = mlp_forward
MixtralSparseMoeBlock.forward = moe_forward