|
|
|
""" |
|
Copied from https://github.com/kaiokendev/cutoff-len-is-context-len/blob/main/util/xpos_rope_llama_monkey_patch.py |
|
""" |
|
import torch |
|
import transformers |
|
import transformers.models.llama.modeling_llama |
|
from einops import rearrange |
|
|
|
|
|
class XposRotaryEmbedding(torch.nn.Module): |
|
def __init__( |
|
self, |
|
dim, |
|
max_position_embeddings=2048, |
|
base=10000, |
|
device=None, |
|
scale_base=2048, |
|
use_xpos=True, |
|
): |
|
super().__init__() |
|
self.max_seq_len_cached = max_position_embeddings |
|
self.scale_base = scale_base |
|
|
|
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim)) |
|
t = torch.arange(self.max_seq_len_cached, device=device).type_as(inv_freq) |
|
freqs = torch.einsum("i , j -> i j", t, inv_freq) |
|
freqs = torch.cat((freqs, freqs), dim=-1) |
|
|
|
self.register_buffer("inv_freq", inv_freq, persistent=False) |
|
self.register_buffer("freqs_cached", freqs, persistent=False) |
|
|
|
if not use_xpos: |
|
self.register_buffer("scale", None) |
|
self.register_buffer("scale_cached", torch.ones(1)) |
|
return |
|
|
|
scale = (torch.arange(0, dim, 2) + 0.4 * dim) / (1.4 * dim) |
|
power = (t - (self.max_seq_len_cached // 2)) / self.scale_base |
|
scale_cached = scale ** rearrange(power, "n -> n 1") |
|
scale_cached = torch.cat((scale_cached, scale_cached), dim=-1) |
|
|
|
self.register_buffer("scale", scale, persistent=False) |
|
self.register_buffer("scale_cached", scale_cached, persistent=False) |
|
|
|
def forward( |
|
self, |
|
x, |
|
seq_len, |
|
): |
|
if seq_len > self.max_seq_len_cached: |
|
self.max_seq_len_cached = seq_len |
|
t = torch.arange(self.max_seq_len_cached, device=x.device).type_as( |
|
self.inv_freq |
|
) |
|
freqs = torch.einsum("i , j -> i j", t, self.inv_freq) |
|
freqs = torch.cat((freqs, freqs), dim=-1).to(dtype=x.dtype) |
|
|
|
self.register_buffer("freqs_cached", freqs) |
|
|
|
if self.scale is None: |
|
self.register_buffer( |
|
"scale_cached", torch.ones(1, device=x.device).to(dtype=x.dtype) |
|
) |
|
|
|
return self.freqs_cached.to(dtype=x.dtype), self.scale_cached |
|
|
|
power = (t - (seq_len // 2)) / self.scale_base |
|
scale = self.scale ** rearrange(power, "n -> n 1") |
|
scale = torch.cat((scale, scale), dim=-1).to(dtype=x.dtype) |
|
self.register_buffer("scale_cached", scale) |
|
|
|
return self.freqs_cached.to(dtype=x.dtype), self.scale_cached.to(dtype=x.dtype) |
|
|
|
|
|
def rotate_half(x): |
|
x1, x2 = x.chunk(2, dim=-1) |
|
return torch.cat((-x2, x1), dim=-1) |
|
|
|
|
|
def apply_rotary_pos_emb(q, k, freqs, scale=1, position_ids=None): |
|
freqs = freqs[position_ids, :] |
|
if scale.shape[-1] != 1: |
|
scale = scale[position_ids, :] |
|
|
|
q_embed = (q * freqs.cos() * scale) + (rotate_half(q) * freqs.sin() * scale) |
|
k_embed = (k * freqs.cos() * 1 / scale) + (rotate_half(k) * freqs.sin() * 1 / scale) |
|
|
|
return q_embed, k_embed |
|
|
|
|
|
def replace_llama_rope_with_xpos_rope(): |
|
transformers.models.llama.modeling_llama.LlamaRotaryEmbedding = XposRotaryEmbedding |
|
transformers.models.llama.modeling_llama.apply_rotary_pos_emb = apply_rotary_pos_emb |
|
|