qwerrwe / tests /e2e /patched /test_fused_llama.py
winglian's picture
make mlflow optional (#1317)
5894f0e unverified
raw
history blame
2.25 kB
"""
E2E tests for lora llama
"""
import logging
import os
import unittest
from pathlib import Path
from transformers.utils import is_torch_bf16_gpu_available
from axolotl.cli import load_datasets
from axolotl.common.cli import TrainerCliArgs
from axolotl.train import train
from axolotl.utils.config import normalize_config
from axolotl.utils.dict import DictDefault
from ..utils import with_temp_dir
LOG = logging.getLogger("axolotl.tests.e2e")
os.environ["WANDB_DISABLED"] = "true"
class TestFusedLlama(unittest.TestCase):
"""
Test case for Llama models using Fused layers
"""
@with_temp_dir
def test_fft_packing(self, temp_dir):
# pylint: disable=duplicate-code
cfg = DictDefault(
{
"base_model": "JackFram/llama-68m",
"flash_attention": True,
"pad_to_sequence_len": True,
"flash_attn_fuse_qkv": True,
"flash_attn_fuse_mlp": True,
"sample_packing": True,
"sequence_len": 1024,
"val_set_size": 0.1,
"special_tokens": {
"unk_token": "<unk>",
"bos_token": "<s>",
"eos_token": "</s>",
},
"datasets": [
{
"path": "mhenrichsen/alpaca_2k_test",
"type": "alpaca",
},
],
"num_epochs": 2,
"micro_batch_size": 2,
"gradient_accumulation_steps": 1,
"output_dir": temp_dir,
"learning_rate": 0.00001,
"optimizer": "adamw_torch",
"lr_scheduler": "cosine",
"max_steps": 10,
"save_steps": 5,
"eval_steps": 5,
}
)
if is_torch_bf16_gpu_available():
cfg.bf16 = True
else:
cfg.fp16 = True
normalize_config(cfg)
cli_args = TrainerCliArgs()
dataset_meta = load_datasets(cfg=cfg, cli_args=cli_args)
train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta)
assert (Path(temp_dir) / "pytorch_model.bin").exists()