qwerrwe / src /axolotl /loraplus.py
winglian's picture
lora+ support (#1352)
decb66e unverified
raw
history blame
4.67 kB
"""Module for LoRA+"""
# MIT License
#
# Copyright (c) 2024 nikhil-ghosh-berkeley
# https://github.com/nikhil-ghosh-berkeley/loraplus
import logging
from functools import reduce
from peft.tuners import lora
from torch import nn
from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
from transformers.trainer_pt_utils import get_parameter_names
LOG = logging.getLogger("axolotl.loraplus")
def get_module(name, opt_model):
"""
Retrieve a module from a model using its parameter name.
Args:
name (str): Full name of the parameter, typically including module path.
opt_model (torch.nn.Module): The model from which to retrieve the module.
Returns:
Module corresponding to the given name.
"""
parent_idx = 2 if "lora" in name else 1
module_names = name.split(sep=".")[:-parent_idx]
module = reduce(getattr, module_names, opt_model)
return module
def create_loraplus_optimizer(
opt_model,
optimizer_cls,
optimizer_kwargs,
loraplus_lr_ratio,
loraplus_lr_embedding=None,
):
"""
Creates an optimizer for the given model, applying LoRA-specific learning rate adjustments to different parameter groups.
Args:
opt_model (torch.nn.Module): The model for which the optimizer is being created.
optimizer_cls (class): The class of the optimizer to be used (e.g., torch.optim.Adam).
optimizer_kwargs (dict): A dictionary of keyword arguments for the optimizer's initialization.
loraplus_lr_ratio (float): The learning rate ratio to be applied to LoRA parameters.
loraplus_lr_embedding (float, optional): A specific learning rate for embedding parameters, with a default value if not provided.
Returns:
An instance of the specified optimizer class configured with the model's parameters organized into groups with custom learning rates.
"""
assert loraplus_lr_ratio is not None, "loraplus_lr_ratio must be provided."
if loraplus_lr_embedding is None:
loraplus_lr_embedding = 1e-6
decay_parameters = get_parameter_names(opt_model, ALL_LAYERNORM_LAYERS)
decay_parameters = [name for name in decay_parameters if "bias" not in name]
param_groups = {
"groupA": {},
"groupB": {},
"groupB_no_decay": {},
"embedding": {},
}
for name, param in opt_model.named_parameters():
if not param.requires_grad:
continue
module = get_module(name, opt_model)
if isinstance(module, lora.Embedding):
param_groups["embedding"][name] = param
elif "lora_B" in name or param.ndim == 1:
if name in decay_parameters:
param_groups["groupB"][name] = param
else:
param_groups["groupB_no_decay"][name] = param
else:
param_groups["groupA"][name] = param
assigned_param_groups = ""
for group, group_params in param_groups.items():
assigned_param_groups += f"{group}\n {list(group_params.keys())}\n\n"
LOG.info(assigned_param_groups)
lr = optimizer_kwargs["lr"] # pylint: disable=invalid-name
weight_decay = optimizer_kwargs.get("weight_decay", 0.0)
optimizer_grouped_parameters = [
{
"params": list(param_groups["groupA"].values()),
"weight_decay": weight_decay,
"lr": lr,
},
{
"params": list(param_groups["embedding"].values()),
"weight_decay": weight_decay,
"lr": loraplus_lr_embedding,
},
{
"params": list(param_groups["groupB"].values()),
"weight_decay": weight_decay,
"lr": lr * loraplus_lr_ratio,
},
{
"params": list(param_groups["groupB_no_decay"].values()),
"weight_decay": 0.0,
"lr": lr * loraplus_lr_ratio,
},
]
optimizer = optimizer_cls(optimizer_grouped_parameters, **optimizer_kwargs)
if optimizer_cls.__name__ == "Adam8bit":
import bitsandbytes
manager = bitsandbytes.optim.GlobalOptimManager.get_instance()
skipped = 0
for module in opt_model.modules():
if isinstance(module, nn.Embedding):
skipped += sum(
{p.data_ptr(): p.numel() for p in module.parameters()}.values()
)
LOG.info(f"skipped {module}: {skipped/2**20}M params")
manager.register_module_override(module, "weight", {"optim_bits": 32})
LOG.debug(f"bitsandbytes: will optimize {module} in fp32")
LOG.info(f"skipped: {skipped/2**20}M params")
return optimizer