winglian's picture
make mlflow optional (#1317)
5894f0e unverified
raw
history blame
29.6 kB
"""Callbacks for Trainer class"""
from __future__ import annotations
import logging
import os
from shutil import copyfile
from tempfile import NamedTemporaryFile
from typing import TYPE_CHECKING, Dict, List
import evaluate
import numpy as np
import pandas as pd
import torch
import torch.distributed as dist
import wandb
from datasets import load_dataset
from optimum.bettertransformer import BetterTransformer
from tqdm import tqdm
from transformers import (
GenerationConfig,
Trainer,
TrainerCallback,
TrainerControl,
TrainerState,
TrainingArguments,
)
from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR, IntervalStrategy
from axolotl.utils.bench import log_gpu_memory_usage
from axolotl.utils.distributed import (
barrier,
broadcast_dict,
gather_scalar_from_all_ranks,
get_world_size,
is_distributed,
is_main_process,
zero_first,
)
if TYPE_CHECKING:
from axolotl.core.trainer_builder import AxolotlTrainingArguments
IGNORE_INDEX = -100
LOG = logging.getLogger("axolotl.callbacks")
class EvalFirstStepCallback(
TrainerCallback
): # pylint: disable=too-few-public-methods disable=unused-argument
"""
Callback to trigger evals on the first step
"""
def on_step_end(
self,
args: TrainingArguments,
state: TrainerState,
control: TrainerControl,
**kwargs,
):
if (
args.evaluation_strategy == IntervalStrategy.STEPS
and state.global_step == 1
):
control.should_evaluate = True
return control
class SaveBetterTransformerModelCallback(
TrainerCallback
): # pylint: disable=too-few-public-methods
"""Callback to save the BetterTransformer wrapped model"""
def on_step_end(
self,
args: TrainingArguments,
state: TrainerState,
control: TrainerControl,
**kwargs,
):
# Save
if (
args.save_strategy == IntervalStrategy.STEPS
and args.save_steps > 0
and state.global_step % args.save_steps == 0
):
control.should_save = True
if control.should_save:
checkpoint_folder = os.path.join(
args.output_dir,
f"{PREFIX_CHECKPOINT_DIR}-{state.global_step}",
)
model = BetterTransformer.reverse(kwargs["model"])
model.save_pretrained(checkpoint_folder)
# FIXME - need to cleanup old checkpoints
# since we're saving here, we don't need the trainer loop to attempt to save too b/c
# the trainer will raise an exception since it can't save a BetterTransformer wrapped model
control.should_save = False
return control
class GPUStatsCallback(
TrainerCallback
): # pylint: disable=too-few-public-methods disable=unused-argument
"""Callback to track GPU utilization"""
def __init__(self, cfg):
self.cfg = cfg
self.logged = False
def on_step_end(
self,
args: TrainingArguments,
state: TrainerState,
control: TrainerControl,
**kwargs,
):
if not self.logged and state.global_step > 1:
log_gpu_memory_usage(LOG, "while training", self.cfg.device)
self.logged = True
return control
class LossWatchDogCallback(TrainerCallback):
"""Callback to track loss and stop training if loss is too high"""
def __init__(self, cfg):
self.cfg = cfg
self.logged = False
self.violations = 0
self.threshold = cfg.loss_watchdog_threshold
self.patience = cfg.loss_watchdog_patience or 3
def on_step_end(
self,
_args: TrainingArguments,
state: TrainerState,
control: TrainerControl,
**_kwargs,
):
if len(state.log_history) > 0 and "loss" in state.log_history[-1]:
if state.log_history[-1]["loss"] > self.threshold:
self.violations += 1
if self.violations >= self.patience:
LOG.warning(
"Loss is too high, stopping training (loss_watchdog_threshold)"
)
control.should_training_stop = True
else:
self.violations = 0
return control
def bench_eval_callback_factory(trainer, tokenizer):
accuracy = evaluate.load("accuracy")
abcd_idx = [
tokenizer("A", add_special_tokens=False).input_ids[0],
tokenizer("B", add_special_tokens=False).input_ids[0],
tokenizer("C", add_special_tokens=False).input_ids[0],
tokenizer("D", add_special_tokens=False).input_ids[0],
tokenizer("E", add_special_tokens=False).input_ids[0],
tokenizer("F", add_special_tokens=False).input_ids[0],
tokenizer("G", add_special_tokens=False).input_ids[0],
]
bench_split = "eval"
def transform_bench_subject(example):
# Split on ':' and trim whitespace
parts = example["subject"].split(":")
first_part = (
parts[0].strip().lower().replace("-", "_")
) # Lowercase the first part
second_part = (
parts[1].strip().replace("-", "_") if len(parts) > 1 else "all"
) # Replace hyphens with underscores
# Return the transformed values
return {"name": first_part, "subject": second_part}
if trainer.args.bench_dataset == "mmlu-zs":
bench_dataset = load_dataset(
"openaccess-ai-collective/mmlu-evals",
data_files={
"eval": "zero_shot_mmlu_val.json",
"test": "zero_shot_mmlu_test.json",
},
)
# bench_dataset = bench_dataset.remove_columns("subject")
# MMLU Five-shot (Eval/Test only)
elif trainer.args.bench_dataset in ["mmlu", "mmlu-fs"]:
bench_dataset = load_dataset(
"openaccess-ai-collective/mmlu-evals",
data_files={
"eval": "five_shot_mmlu_val.json",
"test": "five_shot_mmlu_test.json",
},
)
# bench_dataset = bench_dataset.remove_columns('subject')
elif "/" in trainer.args.bench_dataset:
bench_ds = trainer.args.bench_dataset
bench_ds_name = "/".join(bench_ds.split("/", 2)[:2])
bench_ds_data_file = "/".join(bench_ds.split("/", 2)[2:])
bench_dataset = load_dataset(
bench_ds_name,
data_files={
"eval": bench_ds_data_file,
},
)
bench_dataset["eval"] = bench_dataset["eval"].map(transform_bench_subject)
else:
raise ValueError(
f"unhandled value `{trainer.args.bench_dataset}` for bench_dataset training args"
)
bench_dataset = bench_dataset[trainer.args.bench_split]
if trainer.args.max_bench_samples is not None:
bench_dataset = bench_dataset.select(range(trainer.args.max_bench_samples))
def tokenize_evals(example):
source = f"{tokenizer.bos_token}{example['input']}"
target = f"{example['output']}{tokenizer.eos_token}"
tokenized_source = tokenizer(
source,
max_length=2048,
truncation=True,
add_special_tokens=False,
)
tokenized_target = tokenizer(
target,
max_length=2048,
truncation=True,
add_special_tokens=False,
)
input_ids = tokenized_source["input_ids"] + tokenized_target["input_ids"]
labels = [IGNORE_INDEX] * len(tokenized_source["input_ids"]) + tokenized_target[
"input_ids"
]
return {
"input_ids": input_ids,
"labels": labels,
"subject": example["subject"],
}
with zero_first(is_main_process()):
bench_dataset = bench_dataset.map(tokenize_evals)
bench_dataset = bench_dataset.filter(lambda x: x["labels"][-2] in abcd_idx)
class BenchEvalCallback(TrainerCallback):
"""
TrainerCallback that runs the MMLU evals
"""
def on_evaluate(
self,
args: AxolotlTrainingArguments,
state: TrainerState, # pylint: disable=unused-argument
control: TrainerControl, # pylint: disable=unused-argument
metrics: Dict[str, float], # pylint: disable=unused-argument
**kwargs, # pylint: disable=unused-argument
):
data_loader = trainer.get_bench_dataloader(
bench_dataset.remove_columns(["input", "subject", "output", "name"])
)
trainer.model.eval()
preds, refs = [], []
loss_bench = 0
for batch in tqdm(data_loader, total=len(data_loader)):
(loss, logits, labels) = trainer.prediction_step(
trainer.model,
batch,
prediction_loss_only=False,
)
# There are two tokens, the output, and eos token.
for i, logit in enumerate(logits):
label_non_zero_id = (batch["labels"][i] != IGNORE_INDEX).nonzero()[
0
][0]
logit_abcd = logit[label_non_zero_id - 1][abcd_idx]
preds.append(torch.argmax(logit_abcd).item())
labels = labels[labels != IGNORE_INDEX].view(-1, 2)[:, 0]
refs += [
abcd_idx.index(label) if label in abcd_idx else -1
for label in labels.tolist()
]
loss_bench += loss.item()
# Extract results by subject.
bench_name = bench_dataset["name"]
bench_names: dict = {s: {"refs": [], "preds": []} for s in set(bench_name)}
for s, p, r in zip(bench_name, preds, refs): # pylint: disable=invalid-name
bench_names[s]["preds"].append(p)
bench_names[s]["refs"].append(r)
barrier()
local_bench_names = bench_names
gathered_bench_names: List[Dict] = [{} for _ in range(get_world_size())]
# Gather results from all GPUs to GPU 0
loss_bench_ranks = gather_scalar_from_all_ranks(
lambda: loss_bench, get_world_size()
)
len_data_loader_ranks = gather_scalar_from_all_ranks(
lambda: len(data_loader), get_world_size()
)
results = {}
if is_distributed() and not is_main_process():
dist.gather_object(local_bench_names, dst=0)
else:
if is_distributed():
dist.gather_object(local_bench_names, gathered_bench_names, dst=0)
else:
gathered_bench_names = [local_bench_names]
bench_loss = sum(loss_bench_ranks) / sum(len_data_loader_ranks)
results = {f"{bench_split}_bench_loss": bench_loss}
# Combine results from all GPUs
combined_bench_names: Dict[str, Dict[str, List]] = {}
for bench_name in gathered_bench_names:
for name, data in bench_name.items():
if name not in combined_bench_names:
combined_bench_names[name] = {"refs": [], "preds": []}
combined_bench_names[name]["refs"].extend(data["refs"])
combined_bench_names[name]["preds"].extend(data["preds"])
bench_scores = []
bench_refs = []
bench_preds = []
for (
bench_name
) in combined_bench_names: # pylint: disable=consider-using-dict-items
bench_score = accuracy.compute(
references=combined_bench_names[bench_name]["refs"],
predictions=combined_bench_names[bench_name]["preds"],
)["accuracy"]
bench_refs.extend(combined_bench_names[bench_name]["refs"])
bench_preds.extend(combined_bench_names[bench_name]["preds"])
if not pd.isna(bench_score):
results[
f"{bench_split}_bench_accuracy_{bench_name}"
] = bench_score
bench_scores.append(bench_score)
else:
results[f"{bench_split}_bench_accuracy_{bench_name}"] = 0.0
bench_scores.append(0.0)
results[f"{bench_split}_bench_average_accuracy"] = np.mean(bench_scores)
results[f"{bench_split}_bench_total_accuracy"] = accuracy.compute(
references=bench_refs, predictions=bench_preds
)["accuracy"]
trainer.log(results)
results = broadcast_dict(results)
for key, val in results.items():
metrics[key] = val
return BenchEvalCallback
def causal_lm_bench_eval_callback_factory(trainer: Trainer, tokenizer):
class CausalLMBenchEvalCallback(TrainerCallback):
"""Callback to log prediction values during each evaluation"""
def __init__(self, cfg):
self.cfg = cfg
self.logged = False
self.metrics = self.__maybe_load_metrics()
def __maybe_load_metrics(self):
metrics = {}
for metric in self.cfg.eval_causal_lm_metrics:
try:
metrics[metric] = evaluate.load(metric)
except Exception as exc: # pylint: disable=broad-exception-caught
LOG.warning(f"{metric}: {exc.args}")
return metrics
def on_evaluate(
self,
args: AxolotlTrainingArguments, # pylint: disable=unused-argument
state: TrainerState,
control: TrainerControl,
train_dataloader, # pylint: disable=unused-argument
eval_dataloader,
**kwargs, # pylint: disable=unused-argument
):
trainer.model.eval()
device = torch.device(self.cfg.device)
# pylint: disable=duplicate-code
generation_config = GenerationConfig(
max_new_tokens=self.cfg.eval_max_new_tokens,
bos_token_id=tokenizer.bos_token_id,
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.pad_token_id,
do_sample=False,
use_cache=True,
return_dict_in_generate=True,
output_attentions=False,
output_hidden_states=False,
output_scores=False,
)
def find_ranges(lst):
ranges = []
start = 0
for i in range(1, len(lst)):
if lst[i] == 0:
ranges.append((start, i - 1))
start = i
end = len(lst) - 1
ranges.append((start, end))
return ranges
def compute(metric: evaluate.Metric, **kwargs):
# safely compute a metric and return the score if the format is correct
metric_score = None
try:
metric_score = metric.compute(**kwargs)
return (
metric_score["score"]
if "score" in metric_score
else metric_score["mean_score"]
)
except Exception: # pylint: disable=broad-exception-caught
LOG.debug(
f"Failed to compute metric {metric.name} with kwargs {kwargs.keys()}"
)
return metric_score
def evaluate_preds(sources, predictions, references):
scores = {}
for metric_name, metric in self.metrics.items():
score = compute(
metric,
references=references,
predictions=predictions,
sources=sources,
)
score = score or compute(
metric,
references=[[r] for r in references],
predictions=predictions,
)
scores[metric_name] = score
return scores
def predict_with_generate():
eval_src, eval_pred, eval_ref = [], [], []
for batch in tqdm(eval_dataloader):
batch_labels = batch["labels"].to(device)
batch_input_ids = batch["input_ids"].to(device)
if "position_ids" in batch:
batch_pos_ids = batch["position_ids"].tolist()
else:
batch_pos_ids = [None] * len(batch["input_ids"])
prompt_token_ids_list = []
completion_token_ids_list = []
for input_ids_all, labels_all, pos_ids in zip(
batch_input_ids,
batch_labels,
batch_pos_ids,
):
if pos_ids is None:
pos_ranges = [(0, len(input_ids_all) - 1)]
else:
pos_ranges = find_ranges(pos_ids)
for pos_range in pos_ranges:
start, end = pos_range
if start == end:
continue
input_ids = input_ids_all[start : end + 1]
labels = labels_all[start : end + 1]
tokens_without_loss = labels == IGNORE_INDEX
tokens_with_loss = labels != IGNORE_INDEX
tokens_exclude_padding = input_ids != tokenizer.pad_token_id
prompt_token_includes = (
tokens_without_loss & tokens_exclude_padding
)
prompt_token_ids = input_ids[prompt_token_includes]
prompt_token_ids_list.append(prompt_token_ids)
completion_token_ids = input_ids[tokens_with_loss]
completion_token_ids_list.append(completion_token_ids)
prompt_texts = tokenizer.batch_decode(
prompt_token_ids_list, skip_special_tokens=True
)
completion_texts = tokenizer.batch_decode(
completion_token_ids_list, skip_special_tokens=True
)
with torch.no_grad():
prompt_encoding = tokenizer(
prompt_texts, padding=True, return_tensors="pt"
).to(self.cfg.device)
predictions = trainer.model.generate(
**prompt_encoding, generation_config=generation_config
)
prediction_all_tokens = predictions["sequences"].cpu().tolist()
prediction_without_prompt_tokens_list = []
for prompt_token_ids, prediction_tokens in zip(
prompt_token_ids_list, prediction_all_tokens
):
prediction_without_prompt_tokens = prediction_tokens[
len(prompt_token_ids) :
]
prediction_without_prompt_tokens_list.append(
prediction_without_prompt_tokens
)
predicted_texts = tokenizer.batch_decode(
prediction_without_prompt_tokens_list, skip_special_tokens=True
)
eval_src.extend(prompt_texts)
eval_pred.extend(predicted_texts)
eval_ref.extend(completion_texts)
return eval_src, eval_pred, eval_ref
if is_main_process():
eval_preds = predict_with_generate()
trainer.log(evaluate_preds(*eval_preds))
return control
return CausalLMBenchEvalCallback
def log_prediction_callback_factory(trainer: Trainer, tokenizer):
class LogPredictionCallback(TrainerCallback):
"""Callback to log prediction values during each evaluation"""
def __init__(self, cfg):
self.cfg = cfg
self.logged = False
def on_evaluate(
self,
args: AxolotlTrainingArguments, # pylint: disable=unused-argument
state: TrainerState,
control: TrainerControl,
train_dataloader, # pylint: disable=unused-argument
eval_dataloader,
**kwargs, # pylint: disable=unused-argument
):
eval_table_size = self.cfg.eval_table_size
if eval_table_size <= 0:
return control
trainer.model.eval()
device = torch.device(self.cfg.device)
# pylint: disable=duplicate-code
generation_config = GenerationConfig(
max_new_tokens=self.cfg.eval_max_new_tokens,
bos_token_id=tokenizer.bos_token_id,
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.pad_token_id,
do_sample=False,
use_cache=True,
return_dict_in_generate=True,
output_attentions=False,
output_hidden_states=False,
output_scores=False,
)
def logits_to_tokens(logits) -> torch.Tensor:
probabilities = torch.softmax(logits, dim=-1)
# Get the predicted token ids (the ones with the highest probability)
predicted_token_ids = torch.argmax(probabilities, dim=-1)
return predicted_token_ids
def find_ranges(lst):
ranges = []
start = 0
for i in range(1, len(lst)):
if lst[i] == 0:
ranges.append((start, i - 1))
start = i
end = len(lst) - 1
ranges.append((start, end))
return ranges
def log_table_from_dataloader(name: str, table_dataloader):
table = wandb.Table( # type: ignore[attr-defined]
columns=[
"id",
"Prompt",
"Correct Completion",
"Predicted Completion (model.generate)",
"Predicted Completion (trainer.prediction_step)",
]
)
row_index = 0
for batch in tqdm(table_dataloader):
if row_index > eval_table_size:
break
batch_labels = batch["labels"].to(device)
batch_input_ids = batch["input_ids"].to(device)
if "position_ids" in batch:
batch_pos_ids = batch["position_ids"].tolist()
else:
batch_pos_ids = [None] * len(batch["input_ids"])
(_, batch_logits, _) = trainer.prediction_step(
trainer.model,
batch,
prediction_loss_only=False,
)
prompt_token_ids_list = []
pred_step_token_ids_list = []
completion_token_ids_list = []
for input_ids_all, labels_all, pos_ids, logits in zip(
batch_input_ids,
batch_labels,
batch_pos_ids,
batch_logits,
):
if pos_ids is None:
pos_ranges = [(0, len(input_ids_all) - 1)]
else:
pos_ranges = find_ranges(pos_ids)
for pos_range in pos_ranges:
start, end = pos_range
if start == end:
continue
input_ids = input_ids_all[start : end + 1]
labels = labels_all[start : end + 1]
tokens_without_loss = labels == IGNORE_INDEX
tokens_with_loss = labels != IGNORE_INDEX
tokens_exclude_padding = input_ids != tokenizer.pad_token_id
prompt_token_includes = (
tokens_without_loss & tokens_exclude_padding
)
prompt_token_ids = input_ids[prompt_token_includes]
prompt_token_ids_list.append(prompt_token_ids)
completion_token_ids = input_ids[tokens_with_loss]
completion_token_ids_list.append(completion_token_ids)
pred_step_token_ids = logits_to_tokens(
logits[start : end + 1]
)[tokens_with_loss]
pred_step_token_ids_list.append(pred_step_token_ids)
prompt_texts = tokenizer.batch_decode(
prompt_token_ids_list, skip_special_tokens=True
)
completion_texts = tokenizer.batch_decode(
completion_token_ids_list, skip_special_tokens=True
)
pred_step_texts = tokenizer.batch_decode(
pred_step_token_ids_list, skip_special_tokens=True
)
with torch.no_grad():
prompt_encoding = tokenizer(
prompt_texts, padding=True, return_tensors="pt"
).to(self.cfg.device)
predictions = trainer.model.generate(
**prompt_encoding, generation_config=generation_config
)
prediction_all_tokens = predictions["sequences"].cpu().tolist()
prediction_without_prompt_tokens_list = []
for prompt_token_ids, prediction_tokens in zip(
prompt_token_ids_list, prediction_all_tokens
):
prediction_without_prompt_tokens = prediction_tokens[
len(prompt_token_ids) :
]
prediction_without_prompt_tokens_list.append(
prediction_without_prompt_tokens
)
predicted_texts = tokenizer.batch_decode(
prediction_without_prompt_tokens_list, skip_special_tokens=True
)
for (
prompt_text,
completion_text,
prediction_text,
pred_step_text,
) in zip(
prompt_texts, completion_texts, predicted_texts, pred_step_texts
):
table.add_data(
row_index,
prompt_text,
completion_text,
prediction_text,
pred_step_text,
)
row_index += 1
wandb.run.log({f"{name} - Predictions vs Ground Truth": table}) # type: ignore[attr-defined]
if is_main_process():
log_table_from_dataloader("Eval", eval_dataloader)
return control
return LogPredictionCallback
class SaveAxolotlConfigtoWandBCallback(TrainerCallback):
"""Callback to save axolotl config to wandb"""
def __init__(self, axolotl_config_path):
self.axolotl_config_path = axolotl_config_path
def on_train_begin(
self,
args: AxolotlTrainingArguments, # pylint: disable=unused-argument
state: TrainerState, # pylint: disable=unused-argument
control: TrainerControl,
**kwargs, # pylint: disable=unused-argument
):
if is_main_process():
try:
# sync config to top level in run, cannot delete file right away because wandb schedules it to be synced even w/policy = 'now', so let OS delete it later.
with NamedTemporaryFile(
mode="w", delete=False, suffix=".yml", prefix="axolotl_config_"
) as temp_file:
copyfile(self.axolotl_config_path, temp_file.name)
wandb.save(temp_file.name)
LOG.info(
"The Axolotl config has been saved to the WandB run under files."
)
except (FileNotFoundError, ConnectionError) as err:
LOG.warning(f"Error while saving Axolotl config to WandB: {err}")
return control