nopperl
Support user-defined prompt processing strategies for dpo (#1248)
1e3d530 unverified
raw
history blame
34.8 kB
"""Module containing data utilities"""
import functools
import hashlib
import logging
from collections import defaultdict
from pathlib import Path
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import torch
import yaml
from datasets import (
Dataset,
DatasetDict,
concatenate_datasets,
load_dataset,
load_from_disk,
)
from huggingface_hub import hf_hub_download
from huggingface_hub.utils import HFValidationError
from torch.utils.data import RandomSampler
from transformers import PreTrainedTokenizerBase
from axolotl.common.const import DEFAULT_DATASET_PREPARED_PATH
from axolotl.datasets import TokenizedPromptDataset
from axolotl.prompt_strategies import load
from axolotl.prompt_strategies.dpo import load as load_dpo
from axolotl.prompt_tokenizers import (
AlpacaMultipleChoicePromptTokenizingStrategy,
AlpacaPromptTokenizingStrategy,
AlpacaReflectionPTStrategy,
GPTeacherPromptTokenizingStrategy,
JeopardyPromptTokenizingStrategy,
OpenAssistantPromptTokenizingStrategy,
SummarizeTLDRPromptTokenizingStrategy,
)
from axolotl.prompters import (
AlpacaPrompter,
GPTeacherPrompter,
JeopardyPrompter,
MultipleChoiceConcisePrompter,
MultipleChoiceExplainPrompter,
Prompter,
ReflectAlpacaPrompter,
SummarizeTLDRPrompter,
UnsupportedPrompter,
)
from axolotl.utils.collators import PretrainingBatchSamplerDataCollatorForSeq2Seq
from axolotl.utils.dict import DictDefault
from axolotl.utils.distributed import is_main_process, zero_first
from axolotl.utils.samplers import MultipackBatchSampler, get_dataset_lengths
from axolotl.utils.trainer import (
calculate_total_num_steps,
process_datasets_for_packing,
process_pretraining_datasets_for_packing,
)
LOG = logging.getLogger("axolotl")
def md5(to_hash: str, encoding: str = "utf-8") -> str:
try:
return hashlib.md5(to_hash.encode(encoding), usedforsecurity=False).hexdigest()
except TypeError:
return hashlib.md5(to_hash.encode(encoding)).hexdigest() # nosec
def prepare_dataset(cfg, tokenizer):
prompters = []
if not cfg.pretraining_dataset:
with zero_first(is_main_process()):
if cfg.test_datasets:
train_dataset, _, prompters = load_prepare_datasets(
tokenizer, cfg, DEFAULT_DATASET_PREPARED_PATH, split="train"
)
_, eval_dataset, _ = load_prepare_datasets(
tokenizer, cfg, DEFAULT_DATASET_PREPARED_PATH, split="test"
)
else:
train_dataset, eval_dataset, prompters = load_prepare_datasets(
tokenizer, cfg, DEFAULT_DATASET_PREPARED_PATH
)
else:
path = cfg.pretraining_dataset
name = None
if isinstance(cfg.pretraining_dataset, list) and isinstance(
cfg.pretraining_dataset[0], dict
):
path = cfg.pretraining_dataset[0]["path"]
name = cfg.pretraining_dataset[0]["name"]
ds_wrapper_partial = functools.partial(
get_dataset_wrapper,
cfg.pretraining_dataset[0],
tokenizer,
cfg,
cfg.pretraining_dataset[0]["type"] or "pretrain",
)
train_dataset = wrap_pretraining_dataset(
load_dataset(path, streaming=True, split="train", name=name),
tokenizer,
cfg,
ds_wrapper_partial,
max_tokens=cfg.sequence_len,
batch_size=cfg.micro_batch_size,
seed=cfg.seed or 42,
)
# https://discuss.huggingface.co/t/how-to-use-huggingface-trainer-streaming-datasets-without-wrapping-it-with-torchdatas-iterablewrapper/25230
train_dataset = train_dataset.with_format("torch")
eval_dataset = None
return train_dataset, eval_dataset, cfg.max_steps, prompters
if eval_dataset and cfg.sample_packing and cfg.eval_sample_packing is not False:
total_eval_steps = calculate_total_num_steps(cfg, eval_dataset, update=False)
if total_eval_steps == 0:
raise ValueError(
"eval dataset split is too small for sample_packing. You should set `eval_sample_packing: False`. "
)
if cfg.max_steps:
total_num_steps = min(
calculate_total_num_steps(cfg, train_dataset), cfg.max_steps
)
LOG.info(f"Maximum number of steps set at {total_num_steps}")
else:
total_num_steps = calculate_total_num_steps(cfg, train_dataset)
return train_dataset, eval_dataset, total_num_steps, prompters
def load_tokenized_prepared_datasets(
tokenizer,
cfg,
default_dataset_prepared_path,
split="train",
) -> Tuple[DatasetDict, List[Prompter]]:
cfg_datasets = cfg.test_datasets if split == "test" else cfg.datasets
tokenizer_name = tokenizer.__class__.__name__
ds_hash = str(
md5(
(
str(cfg.sequence_len)
+ "@"
+ str(cfg.sample_packing)
+ "@"
+ str(cfg.eval_sample_packing)
+ "@"
+ str(cfg.group_by_length)
+ "@"
+ "|".join(
sorted(
[
f"{d.path}:{d.type}:{d.shards}:{d.conversation}{d.split}"
for d in cfg_datasets
]
)
)
+ "|"
+ tokenizer_name
)
)
)
prepared_ds_path = (
Path(cfg.dataset_prepared_path) / ds_hash
if cfg.dataset_prepared_path
else Path(default_dataset_prepared_path) / ds_hash
)
dataset = None
prompters = []
use_auth_token = cfg.hf_use_auth_token
try:
if cfg.push_dataset_to_hub:
dataset = load_dataset(
f"{cfg.push_dataset_to_hub}/{ds_hash}",
token=use_auth_token,
)
dataset = dataset[split]
except Exception: # pylint: disable=broad-except # nosec
pass
if dataset:
...
elif (
cfg.dataset_prepared_path
and any(prepared_ds_path.glob("*"))
and not cfg.is_preprocess
):
LOG.info(f"Loading prepared dataset from disk at {prepared_ds_path}...")
dataset = load_from_disk(str(prepared_ds_path))
LOG.info("Prepared dataset loaded from disk...")
else:
LOG.info(f"Unable to find prepared dataset in {prepared_ds_path}")
LOG.info("Loading raw datasets...")
if not cfg.is_preprocess:
LOG.warning(
"Processing datasets during training can lead to VRAM instability. Please pre-process your dataset."
)
if cfg.seed:
seed = cfg.seed
else:
LOG.info("No seed provided, using default seed of 42")
seed = 42
datasets = []
def for_d_in_datasets(dataset_configs):
for dataset in dataset_configs:
if dataset.name and isinstance(dataset.name, list):
for name in dataset.name:
yield DictDefault({**dataset, "name": name})
else:
yield dataset
# pylint: disable=invalid-name
for config_dataset in for_d_in_datasets(cfg_datasets):
ds: Optional[Union[Dataset, DatasetDict]] = None
ds_from_hub = False
try:
load_dataset(
config_dataset.path,
name=config_dataset.name,
streaming=True,
token=use_auth_token,
)
ds_from_hub = True
except (FileNotFoundError, ConnectionError, HFValidationError):
pass
ds_from_cloud = False
storage_options = {}
remote_file_system = None
if config_dataset.path.startswith("s3://"):
try:
import aiobotocore.session # type: ignore
import s3fs # type: ignore
except ImportError as exc:
raise ImportError(
"s3:// paths require aiobotocore and s3fs to be installed"
) from exc
# Takes credentials from ~/.aws/credentials for default profile
s3_session = aiobotocore.session.AioSession(profile="default")
storage_options = {"session": s3_session}
remote_file_system = s3fs.S3FileSystem(**storage_options)
elif config_dataset.path.startswith(
"gs://"
) or config_dataset.path.startswith("gcs://"):
try:
import gcsfs # type: ignore
except ImportError as exc:
raise ImportError(
"gs:// or gcs:// paths require gcsfs to be installed"
) from exc
# gcsfs will use default credentials from the environment else anon
# https://gcsfs.readthedocs.io/en/latest/#credentials
storage_options = {"token": None}
remote_file_system = gcsfs.GCSFileSystem(**storage_options)
# TODO: Figure out how to get auth creds passed
# elif config_dataset.path.startswith("adl://") or config_dataset.path.startswith("abfs://"):
# try:
# import adlfs
# except ImportError as exc:
# raise ImportError(
# "adl:// or abfs:// paths require adlfs to be installed"
# ) from exc
# # Gen 1
# storage_options = {
# "tenant_id": TENANT_ID,
# "client_id": CLIENT_ID,
# "client_secret": CLIENT_SECRET,
# }
# # Gen 2
# storage_options = {
# "account_name": ACCOUNT_NAME,
# "account_key": ACCOUNT_KEY,
# }
# remote_file_system = adlfs.AzureBlobFileSystem(**storage_options)
try:
if remote_file_system and remote_file_system.exists(
config_dataset.path
):
ds_from_cloud = True
except (FileNotFoundError, ConnectionError):
pass
# prefer local dataset, even if hub exists
local_path = Path(config_dataset.path)
if local_path.exists():
if local_path.is_dir():
# TODO dirs with arrow or parquet files could be loaded with `load_from_disk`
ds = load_dataset(
config_dataset.path,
name=config_dataset.name,
data_files=config_dataset.data_files,
streaming=False,
split=None,
)
elif local_path.is_file():
ds_type = get_ds_type(config_dataset)
ds = load_dataset(
ds_type,
name=config_dataset.name,
data_files=config_dataset.path,
streaming=False,
split=None,
)
else:
raise ValueError(
"unhandled dataset load: local path exists, but is neither a directory or a file"
)
elif ds_from_hub:
ds = load_dataset(
config_dataset.path,
name=config_dataset.name,
streaming=False,
data_files=config_dataset.data_files,
token=use_auth_token,
)
elif ds_from_cloud and remote_file_system:
if remote_file_system.isdir(config_dataset.path):
ds = load_from_disk(
config_dataset.path,
storage_options=storage_options,
)
elif remote_file_system.isfile(config_dataset.path):
ds_type = get_ds_type(config_dataset)
ds = load_dataset(
ds_type,
name=config_dataset.name,
data_files=config_dataset.path,
streaming=False,
split=None,
storage_options=storage_options,
)
elif config_dataset.path.startswith("https://"):
ds_type = get_ds_type(config_dataset)
ds = load_dataset(
ds_type,
name=config_dataset.name,
data_files=config_dataset.path,
streaming=False,
split=None,
storage_options=storage_options,
)
else:
if isinstance(config_dataset.data_files, str):
fp = hf_hub_download(
repo_id=config_dataset.path,
repo_type="dataset",
filename=config_dataset.data_files,
)
elif isinstance(config_dataset.data_files, list):
fp = []
for file in config_dataset.data_files:
fp.append(
hf_hub_download(
repo_id=config_dataset.path,
repo_type="dataset",
filename=file,
)
)
else:
raise ValueError(
"data_files must be either a string or list of strings"
)
ds = load_dataset(
"json",
name=config_dataset.name,
data_files=fp,
streaming=False,
split=None,
)
if not ds:
raise ValueError("unhandled dataset load")
d_base_type = d_prompt_style = None
d_type = config_dataset.type
if isinstance(d_type, str):
d_type_split = d_type.split(":")
d_base_type = d_type_split[0]
d_prompt_style = d_type_split[1] if len(d_type_split) > 1 else None
if config_dataset.split and config_dataset.split in ds:
ds = ds[config_dataset.split]
elif split in ds:
ds = ds[split]
elif isinstance(ds, DatasetDict):
raise ValueError(
f"no {split} split found for dataset {config_dataset.path}, you may specify a split with 'split: `"
)
# support for using a subset of the data
if config_dataset.shards:
shards_idx = config_dataset.get("shards_idx", 0)
ds = ds.shuffle(seed=seed).shard(
num_shards=config_dataset.shards, index=shards_idx
)
dataset_wrapper, dataset_prompter = get_dataset_wrapper(
config_dataset=config_dataset,
tokenizer=tokenizer,
cfg=cfg,
dataset=ds,
d_base_type=d_base_type,
d_prompt_style=d_prompt_style,
)
datasets.append(dataset_wrapper)
prompters.append(dataset_prompter)
LOG.info("merging datasets")
dataset = concatenate_datasets(datasets)
if len(datasets) > 1:
LOG.info("shuffle merged datasets")
dataset = dataset.shuffle(seed=seed)
dataset, _ = process_datasets_for_packing(cfg, dataset, None)
if cfg.local_rank == 0:
LOG.info(f"Saving merged prepared dataset to disk... {prepared_ds_path}")
dataset.save_to_disk(prepared_ds_path)
if cfg.push_dataset_to_hub:
LOG.info(
f"Saving merged prepared dataset with push_to_hub... {cfg.push_dataset_to_hub}/{ds_hash}"
)
dataset.push_to_hub(
f"{cfg.push_dataset_to_hub}/{ds_hash}", private=True
)
return dataset, prompters
def get_ds_type(config_dataset: DictDefault):
"""
Get the dataset type from the path if it's not specified
"""
ds_type = "json"
if config_dataset.ds_type:
ds_type = config_dataset.ds_type
elif ".parquet" in config_dataset.path:
ds_type = "parquet"
elif ".arrow" in config_dataset.path:
ds_type = "arrow"
elif ".csv" in config_dataset.path:
ds_type = "csv"
elif ".txt" in config_dataset.path:
ds_type = "text"
return ds_type
def load_prepare_datasets(
tokenizer: PreTrainedTokenizerBase,
cfg,
default_dataset_prepared_path,
split="train",
) -> Tuple[Dataset, Dataset, List[Prompter]]:
dataset, prompters = load_tokenized_prepared_datasets(
tokenizer, cfg, default_dataset_prepared_path, split=split
)
if cfg.dataset_shard_num and cfg.dataset_shard_idx is not None:
LOG.info(
f"Using index #{cfg.dataset_shard_idx} of {cfg.dataset_shard_num} shards"
)
dataset = dataset.shard(
num_shards=cfg.dataset_shard_num,
index=cfg.dataset_shard_idx,
)
if split == "train" and cfg.val_set_size:
# ensure we end up with the same fingerprint by doing rank0 first and being able to cache
to_hash_train = (
dataset._fingerprint # pylint: disable=protected-access
+ "|"
+ str(cfg.val_set_size)
+ "|"
+ "train"
+ "|"
+ str(cfg.seed or 42)
)
to_hash_test = (
dataset._fingerprint # pylint: disable=protected-access
+ "|"
+ str(cfg.val_set_size)
+ "|"
+ "test"
+ "|"
+ str(cfg.seed or 42)
)
train_fingerprint = md5(to_hash_train)
test_fingerprint = md5(to_hash_test)
dataset = dataset.train_test_split(
test_size=cfg.val_set_size,
shuffle=False,
seed=cfg.seed or 42,
train_new_fingerprint=train_fingerprint,
test_new_fingerprint=test_fingerprint,
)
train_dataset = dataset["train"]
eval_dataset = dataset["test"]
elif split == "test":
train_dataset = None
eval_dataset = dataset
else:
train_dataset = dataset
eval_dataset = None
return train_dataset, eval_dataset, prompters
def get_dataset_wrapper(
config_dataset,
tokenizer,
cfg,
d_base_type,
dataset,
d_prompt_style=None,
):
dataset_wrapper = None
dataset_prompter = None
ds_kwargs = {
"process_count": cfg.dataset_processes,
"keep_in_memory": cfg.dataset_keep_in_memory is True,
}
if (
isinstance(dataset, Dataset)
and "input_ids" in dataset.features
and "attention_mask" in dataset.features
and "labels" in dataset.features
):
# dataset is already tokenized, just drop it straight in
dataset_prompter = UnsupportedPrompter()
dataset_wrapper = dataset
elif isinstance(config_dataset.type, DictDefault):
ds_strategy = load(
"user_defined", tokenizer, cfg, config_dataset.type.to_dict()
)
dataset_prompter = UnsupportedPrompter()
dataset_wrapper = TokenizedPromptDataset(
ds_strategy,
dataset,
**ds_kwargs,
)
elif ds_strategy := load(config_dataset.type, tokenizer, cfg, config_dataset):
dataset_prompter = UnsupportedPrompter()
dataset_wrapper = TokenizedPromptDataset(
ds_strategy,
dataset,
**ds_kwargs,
)
elif d_base_type == "alpaca":
dataset_prompter = AlpacaPrompter(d_prompt_style)
ds_strategy = AlpacaPromptTokenizingStrategy(
dataset_prompter,
tokenizer,
cfg.train_on_inputs,
cfg.sequence_len,
)
ds_wrapper = TokenizedPromptDataset(
ds_strategy,
dataset,
**ds_kwargs,
)
dataset_wrapper = ds_wrapper
elif d_base_type == "explainchoice":
dataset_prompter = MultipleChoiceExplainPrompter(d_prompt_style)
ds_strategy = AlpacaMultipleChoicePromptTokenizingStrategy(
dataset_prompter,
tokenizer,
cfg.train_on_inputs,
cfg.sequence_len,
)
ds_wrapper = TokenizedPromptDataset(
ds_strategy,
dataset,
**ds_kwargs,
)
dataset_wrapper = ds_wrapper
elif d_base_type == "concisechoice":
dataset_prompter = MultipleChoiceConcisePrompter(d_prompt_style)
ds_strategy = AlpacaMultipleChoicePromptTokenizingStrategy(
dataset_prompter,
tokenizer,
cfg.train_on_inputs,
cfg.sequence_len,
)
ds_wrapper = TokenizedPromptDataset(
ds_strategy,
dataset,
**ds_kwargs,
)
dataset_wrapper = ds_wrapper
elif d_base_type == "summarizetldr":
dataset_prompter = SummarizeTLDRPrompter(d_prompt_style)
ds_strategy = SummarizeTLDRPromptTokenizingStrategy(
dataset_prompter,
tokenizer,
cfg.train_on_inputs,
cfg.sequence_len,
)
ds_wrapper = TokenizedPromptDataset(
ds_strategy,
dataset,
**ds_kwargs,
)
dataset_wrapper = ds_wrapper
elif d_base_type == "jeopardy":
dataset_prompter = JeopardyPrompter(d_prompt_style)
ds_strategy = JeopardyPromptTokenizingStrategy(
dataset_prompter,
tokenizer,
cfg.train_on_inputs,
cfg.sequence_len,
)
ds_wrapper = TokenizedPromptDataset(
ds_strategy,
dataset,
**ds_kwargs,
)
dataset_wrapper = ds_wrapper
elif d_base_type == "oasst":
dataset_prompter = AlpacaPrompter(d_prompt_style)
ds_strategy = OpenAssistantPromptTokenizingStrategy(
dataset_prompter,
tokenizer,
cfg.train_on_inputs,
cfg.sequence_len,
)
ds_wrapper = TokenizedPromptDataset(
ds_strategy,
dataset,
**ds_kwargs,
)
dataset_wrapper = ds_wrapper
elif d_base_type == "gpteacher":
dataset_prompter = GPTeacherPrompter(d_prompt_style)
ds_strategy = GPTeacherPromptTokenizingStrategy(
dataset_prompter,
tokenizer,
cfg.train_on_inputs,
cfg.sequence_len,
)
ds_wrapper = TokenizedPromptDataset(
ds_strategy,
dataset,
**ds_kwargs,
)
dataset_wrapper = ds_wrapper
elif d_base_type == "reflection":
dataset_prompter = ReflectAlpacaPrompter(d_prompt_style)
ds_strategy = AlpacaReflectionPTStrategy(
dataset_prompter,
tokenizer,
cfg.train_on_inputs,
cfg.sequence_len,
)
ds_wrapper = TokenizedPromptDataset(
ds_strategy,
dataset,
**ds_kwargs,
)
dataset_wrapper = ds_wrapper
else:
suffix = ""
if ":load_" in config_dataset.type:
suffix = f" Did you mean {config_dataset.type.replace(':load_', '.load_')}?"
LOG.error(
f"unhandled prompt tokenization strategy: {config_dataset.type}. {suffix}"
)
raise ValueError(
f"unhandled prompt tokenization strategy: {config_dataset.type} {suffix}"
)
return dataset_wrapper, dataset_prompter
def encode_pretraining(
tokenizer: PreTrainedTokenizerBase, max_tokens: int, examples: List[str]
) -> Dict[str, List]:
res = tokenizer(
examples,
truncation=True,
max_length=max_tokens - 2,
add_special_tokens=True,
)
# Convert to PyTorch tensors
input_ids = [torch.tensor(seq) for seq in res["input_ids"]]
attention_mask = [torch.tensor(seq) for seq in res["attention_mask"]]
new_input_ids = []
new_attention_mask = []
# Append EOS and PAD tokens to input_ids, and correct attention_mask
for i, _ in enumerate(input_ids):
input_ids[i] = torch.cat(
(
input_ids[i],
torch.tensor([tokenizer.eos_token_id, tokenizer.pad_token_id]),
),
dim=0,
)
attention_mask[i] = torch.cat((attention_mask[i], torch.tensor([1, 0])), dim=0)
# Concatenate tokens so that their lengths are less than max_tokens
buffer_input_ids = torch.tensor([], dtype=torch.long)
buffer_attention_mask = torch.tensor([], dtype=torch.long)
for ids, mask in zip(input_ids, attention_mask):
if buffer_input_ids.numel() == max_tokens:
new_input_ids.append(buffer_input_ids)
new_attention_mask.append(buffer_attention_mask)
buffer_input_ids = torch.tensor([], dtype=torch.long)
buffer_attention_mask = torch.tensor([], dtype=torch.long)
buffer_input_ids = torch.cat((buffer_input_ids, ids), dim=0)
buffer_attention_mask = torch.cat((buffer_attention_mask, mask), dim=0)
elif buffer_input_ids.numel() + ids.numel() <= max_tokens:
buffer_input_ids = torch.cat((buffer_input_ids, ids), dim=0)
buffer_attention_mask = torch.cat((buffer_attention_mask, mask), dim=0)
else:
buffer_input_ids = torch.cat(
(
buffer_input_ids,
torch.full(
(max_tokens - buffer_input_ids.numel(),),
tokenizer.pad_token_id,
dtype=torch.long,
),
),
dim=0,
)
buffer_attention_mask = torch.cat(
(
buffer_attention_mask,
torch.full(
(max_tokens - buffer_attention_mask.numel(),),
0,
dtype=torch.long,
),
),
dim=0,
)
new_input_ids.append(buffer_input_ids)
new_attention_mask.append(buffer_attention_mask)
buffer_input_ids = torch.tensor([], dtype=torch.long)
buffer_attention_mask = torch.tensor([], dtype=torch.long)
buffer_input_ids = torch.cat((buffer_input_ids, ids), dim=0)
buffer_attention_mask = torch.cat((buffer_attention_mask, mask), dim=0)
if buffer_input_ids.numel() > 0: # for any leftover tokens
while buffer_input_ids.numel() < max_tokens: # make all sequences equal in size
buffer_input_ids = torch.cat(
(
buffer_input_ids,
torch.full(
(max_tokens - buffer_input_ids.numel(),),
tokenizer.pad_token_id,
dtype=torch.long,
),
),
dim=0,
)
buffer_attention_mask = torch.cat(
(
buffer_attention_mask,
torch.full(
(max_tokens - buffer_attention_mask.numel(),),
0,
dtype=torch.long,
),
),
dim=0,
)
new_input_ids.append(buffer_input_ids)
new_attention_mask.append(buffer_attention_mask)
ret = {
"input_ids": [seq.tolist() for seq in new_input_ids],
"labels": [seq.tolist() for seq in new_input_ids],
"attention_mask": [seq.tolist() for seq in new_attention_mask],
}
LOG.debug(len(ret["input_ids"]))
return ret
def wrap_pretraining_dataset(
dataset,
tokenizer,
cfg,
ds_wrapper_fn,
max_tokens=2048,
batch_size=1,
seed=42,
buffer_size=10_000,
):
if cfg.sample_packing:
collate_fn = PretrainingBatchSamplerDataCollatorForSeq2Seq(
tokenizer,
return_tensors="pt",
padding=True,
pad_to_multiple_of=max_tokens * batch_size,
)
encode = functools.partial(
encode_packed_pretraining,
collate_fn,
ds_wrapper_fn,
max_seq_length=max_tokens,
batch_size=batch_size,
)
# set this to 1 so downstream data_loader doesn't try to increase the batch again
cfg.micro_batch_size = 1
else:
encode = functools.partial(encode_pretraining, tokenizer, max_tokens)
dataset = dataset.shuffle(seed=seed, buffer_size=buffer_size)
dataset = dataset.map(
encode,
batched=True,
batch_size=buffer_size,
# input_columns="text",
# remove all the existing columns after mapping since they end up having
# a different length than the encoded/tokenized column
remove_columns=dataset.features.keys(),
)
return dataset
def encode_packed_pretraining(
collate_fn,
ds_wrapper: Callable,
examples: Dict[str, List],
max_seq_length: int = 2048,
batch_size: int = 4,
) -> Dict[str, List]:
# pylint: disable=duplicate-code
# tokenize all the examples
# rows get split with stride (overlap)
train_dataset = ds_wrapper(Dataset.from_dict(examples))[0]
train_dataset = process_pretraining_datasets_for_packing(
train_dataset, max_seq_length
)
sampler = MultipackBatchSampler(
RandomSampler(train_dataset),
batch_size=1,
drop_last=True,
batch_max_len=batch_size * max_seq_length,
lengths=get_dataset_lengths(train_dataset),
)
chunked_data = defaultdict(list)
for batch in sampler:
for data in batch:
features = train_dataset[data]
if "num_truncated_tokens" in features:
del features["num_truncated_tokens"]
if "num_truncated_tokens" in features:
del features["num_truncated_tokens"]
if "overflow_to_sample_mapping" in features:
del features["overflow_to_sample_mapping"]
if "labels" not in features:
features["labels"] = features["input_ids"].copy()
collated_features = collate_fn(features)
for feature in features.keys():
if feature == "length":
continue
chunked_data[feature].append(collated_features[feature].squeeze(0))
return chunked_data
def _get_path(ds_hash, cfg):
prepared_ds_path = (
Path(cfg.dataset_prepared_path) / ds_hash
if cfg.dataset_prepared_path
else Path(DEFAULT_DATASET_PREPARED_PATH) / ds_hash
)
return prepared_ds_path
def _load_preprocessed_ds(cfg, sub_cfg):
ds_hash = md5(yaml.dump(sub_cfg, Dumper=yaml.Dumper))
prepared_ds_path = _get_path(ds_hash, cfg)
dataset = None
if (
cfg.dataset_prepared_path
and any(prepared_ds_path.glob("*"))
and not cfg.is_preprocess
):
LOG.info(f"Loading prepared dataset from disk at {prepared_ds_path}...")
dataset = load_from_disk(str(prepared_ds_path))
return dataset
def _save_preprocessed_ds(cfg, sub_cfg, dataset):
ds_hash = md5(yaml.dump(sub_cfg, Dumper=yaml.Dumper))
prepared_ds_path = _get_path(ds_hash, cfg)
if cfg.is_preprocess and is_main_process():
LOG.info(f"Loading prepared dataset from disk at {prepared_ds_path}...")
dataset.save_to_disk(str(prepared_ds_path))
def load_prepare_dpo_datasets(cfg):
def load_split(dataset_cfgs, _cfg):
split_datasets: List[Any] = []
for i, ds_cfg in enumerate(dataset_cfgs):
if ds_cfg["ds_type"] == "json":
for data_file in ds_cfg["data_files"]:
data_files = {ds_cfg["split"]: data_file}
ds = load_dataset( # pylint: disable=invalid-name
"json",
data_files=data_files,
split=ds_cfg["split"],
)
split_datasets.insert(i, ds)
else:
ds = load_dataset( # pylint: disable=invalid-name
ds_cfg["path"],
split=ds_cfg["split"],
)
split_datasets.insert(i, ds)
for i, data_set in enumerate(split_datasets):
_type = dataset_cfgs[i]["type"]
if _type:
if isinstance(_type, DictDefault):
_type = "user_defined.default"
ds_transform_fn = load_dpo(_type, _cfg, dataset_idx=i)
split_datasets[i] = data_set.map(
ds_transform_fn,
desc="Mapping RL Dataset",
)
else:
# If no `type` is provided, assume the dataset is already in the expected format with
# "prompt", "chosen" and "rejected" already preprocessed
split_datasets[i] = data_set
return concatenate_datasets(split_datasets)
with zero_first(is_main_process()):
train_is_preprocessed = False
eval_is_preprocessed = False
if train_dataset := _load_preprocessed_ds(cfg, cfg.datasets):
train_is_preprocessed = True
else:
train_dataset = load_split(cfg.datasets, cfg)
eval_dataset = None
if cfg.test_datasets:
if eval_dataset := _load_preprocessed_ds(cfg, cfg.test_datasets):
eval_is_preprocessed = True
else:
eval_dataset = load_split(cfg.test_datasets, cfg)
if not eval_dataset:
eval_dataset = None
if not train_is_preprocessed:
_save_preprocessed_ds(cfg, cfg.datasets, train_dataset)
if eval_dataset and not eval_is_preprocessed:
_save_preprocessed_ds(cfg, cfg.test_datasets, eval_dataset)
return train_dataset, eval_dataset